


A brief introduction to the SORT tracking algorithm and its Python implementation example
SORT (Simple Online and Realtime Tracking) is a target tracking algorithm based on Kalman filter, which can robustly track moving targets in real-time scenes. The SORT algorithm was originally proposed by Alex Bewley and others in 2016. It has been widely used in various applications in the field of computer vision, such as video surveillance, autonomous driving, robot navigation, etc.
The SORT algorithm is mainly based on two core ideas: Kalman filtering and Hungarian algorithm. Kalman filter is an algorithm for estimating system state. It can use the dynamic model of the system and sensor measurements to predict and update the system state, thereby improving the accuracy of state estimation. The Hungarian algorithm is an algorithm used to solve the maximum weight matching problem in bipartite graphs. It can find the maximum weight matching given a bipartite graph.
The main steps of the SORT algorithm are as follows:
Target detection: Use target detection algorithms (such as YOLO, SSD, etc.) to extract the objects in the current frame target information.
State prediction: For each tracked target, use Kalman filter to predict its state.
Data association: Based on the prediction status and the target information in the current frame, use the Hungarian algorithm to perform data association to find the target corresponding to each tracked target in the current frame.
Status update: For each tracked target, use Kalman filter to update its status.
Target output: Output the status information and tracking results of each tracked target.
In computer vision, the SORT algorithm can be applied to various target tracking scenarios. For example, in video surveillance, the SORT algorithm can track moving targets in real time, thereby enabling detection and early warning of abnormal behaviors in the scene. In the field of autonomous driving, the SORT algorithm can track other vehicles, pedestrians and other traffic participants to achieve autonomous navigation and obstacle avoidance of vehicles. In robot navigation, the SORT algorithm can track moving targets to achieve autonomous navigation and obstacle avoidance of the robot.
The following is a simple sample code implemented in Python:
#python import numpy as np from filterpy.kalman import KalmanFilter from scipy.optimize import linear_sum_assignment class Track: def init(self,prediction,track_id,track_lifetime): self.prediction=np.atleast_2d(prediction) self.track_id=track_id self.track_lifetime=track_lifetime self.age=0 self.total_visible_count=1 self.consecutive_invisible_count=0 def predict(self, kf): self.prediction = kf.predict() self.age += 1 def update(self, detection, kf): self.prediction = kf.update(detection) self.total_visible_count += 1 self.consecutive_invisible_count = 0 def mark_missed(self): self.consecutive_invisible_count += 1 def is_dead(self): return self.consecutive_invisible_count >= self.track_lifetime class Tracker: def init(self,track_lifetime,detection_variance,process_variance): self.next_track_id=0 self.tracks=[] self.track_lifetime=track_lifetime self.detection_variance=detection_variance self.process_variance=process_variance self.kf=KalmanFilter(dim_x=4,dim_z=2) self.kf.F=np.array([[1,0,1,0], [0,1,0,1], [0,0,1,0], [0,0,0,1]]) self.kf.H=np.array([[1,0,0,0], [0,1,0,0]]) self.kf.R=np.array([[self.detection_variance,0], [0,self.detection_variance]]) self.kf.Q=np.array([[self.process_variance,0,0,0], [0,self.process_variance,0,0], [0,0,self.process_variance,0], [0,0,0,self.process_variance]]) def update(self, detections): # predict track positions using Kalman filter for track in self.tracks: track.predict(self.kf) # associate detections with tracks using Hungarian algorithm if len(detections) > 0: num_tracks = len(self.tracks) num_detections = len(detections) cost_matrix = np.zeros((num_tracks, num_detections)) for i, track in enumerate(self.tracks): for j, detection in enumerate(detections): diff = track.prediction - detection distance = np.sqrt(diff[0,0]**2 + diff[0,1]**2) cost_matrix[i,j] = distance row_indices, col_indices = linear_sum_assignment(cost_matrix) unassigned_tracks = set(range(num_tracks)) - set(row_indices) unassigned_detections = set(range(num_detections)) - set(col_indices) for i, j in zip(row_indices, col_indices): self.tracks[i].update(detections[j], self.kf) for i in unassigned_tracks: self.tracks[i].mark_missed() for j in unassigned_detections: new_track = Track(detections[j], self.next_track_id, self.track_lifetime) self.tracks.append(new_track) self.next_track_id += 1 # remove dead tracks self.tracks = [track for track in self.tracks if not track.is_dead()] # return list of track positions return [track.prediction.tolist()[0] for track in self.tracks]
The above code implements a simple SORT tracking algorithm, using the Kalman filter to calculate the target position and velocity Make predictions and estimates, then use the Hungarian algorithm to associate the target, and finally determine whether the target is dead based on the number of consecutive invisible times of the target and remove the dead target. The above code implements a simple SORT tracking algorithm, using the Kalman filter to predict and estimate the target position and speed, then using the Hungarian algorithm to associate the target, and finally judging whether the target is dead and removing the death based on the number of consecutive invisible times of the target. The goal.
In addition to the SORT algorithm, there are many other target tracking algorithms, such as Kalman filter, particle filter, multi-target tracking, etc. Each algorithm has its applicable scenarios, advantages and disadvantages. In practical applications, it is necessary to select an appropriate algorithm for target tracking based on specific scenarios and needs.
The above is the detailed content of A brief introduction to the SORT tracking algorithm and its Python implementation example. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made
