


Learn these techniques to make your data tidier: a brief introduction to Pandas' duplication method
Introduction to Pandas deduplication method: Learn to use these techniques to make data cleaner, specific code examples are required
Overview:
In data analysis and processing, We often encounter situations where we need to deal with duplicate data. The existence of duplicate data may lead to bias in analysis results, so deduplication is a very important and basic data processing operation. Pandas provides a variety of deduplication methods. This article will briefly introduce the commonly used techniques and provide some specific code examples.
Method 1: drop_duplicates()
Pandas’s drop_duplicates() method is one of the most commonly used deduplication methods. It can remove duplicate rows from data based on specified columns. By default, this method retains the first occurrence of a duplicate value and deletes subsequent occurrences of the duplicate value. The following is a code example:
import pandas as pd
Create a DataFrame containing duplicate data
data = {'A': [1, 2, 3, 4 , 4, 5, 6],
'B': ['a', 'b', 'c', 'd', 'd', 'e', 'f']}
df = pd.DataFrame(data)
Use drop_duplicates() method to remove duplicate rows
df.drop_duplicates(inplace=True )
print(df)
Run the above code and you will get a DataFrame with duplicate rows removed.
Method 2: duplicated() and ~ operator
In addition to the drop_duplicates() method, we can also use the duplicated() method to determine whether each row is a duplicate row, and then use the ~ operator to invert it Select non-duplicate rows. The following is a code example:
import pandas as pd
Create a DataFrame containing duplicate data
data = {'A': [1, 2, 3, 4 , 4, 5, 6],
'B': ['a', 'b', 'c', 'd', 'd', 'e', 'f']}
df = pd.DataFrame(data)
Use duplicated() and ~ operator to remove duplicate rows
df = df[ ~df.duplicated()]
print(df)
Run the above code and you will get the same result as the previous method one.
Method 3: subset parameter
The drop_duplicates() method also provides a subset parameter, which can specify one or more columns to determine duplicate rows. The following is a code example:
import pandas as pd
Create a DataFrame containing duplicate data
data = {'A': [1, 2, 3, 4 , 4, 5, 6],
'B': ['a', 'b', 'c', 'd', 'd', 'e', 'f'], 'C': ['x', 'y', 'y', 'z', 'z', 'y', 'z']}
df = pd.DataFrame(data)
Use the subset parameter to remove duplicate rows of specific columns
df.drop_duplicates(subset= ['A', 'B'], inplace=True)
print(df)
Run the above code and you will get the result of removing duplicate rows based on columns 'A' and 'B' .
Method 4: keep parameter
The keep parameter of the drop_duplicates() method can be set to 'last', thereby retaining the last of the duplicate values. The following is a code example:
import pandas as pd
Create a DataFrame containing duplicate data
data = {'A': [1, 2, 3, 4 , 4, 5, 6],
'B': ['a', 'b', 'c', 'd', 'd', 'e', 'f']}
df = pd.DataFrame(data)
Use the keep parameter to retain the last duplicate value
df.drop_duplicates(keep= 'last', inplace=True)
print(df)
Run the above code and you will get the result of retaining the last duplicate value.
Method 5: Use primary key to remove duplicates
When processing a DataFrame containing multiple columns, we can use the set_index() method to set one or more columns as the primary key, and then use the drop_duplicates() method to remove duplicates OK. The following is a code example:
import pandas as pd
Create a DataFrame containing duplicate data
data = {'A': [1, 2, 3, 4 , 4, 5, 6],
'B': ['a', 'b', 'c', 'd', 'd', 'e', 'f'], 'C': ['x', 'y', 'y', 'z', 'z', 'y', 'z']}
df = pd.DataFrame(data)
Use the set_index() method to set the 'A' and 'B' columns as primary keys, and then use drop_duplicates( ) method to remove duplicate rows
df.set_index(['A', 'B'], inplace=True)
df = df[~df.index.duplicated()]
print(df)
Run the above code and you will get the result of removing duplicate rows based on columns 'A' and 'B'.
Summary:
This article briefly introduces several commonly used deduplication methods in Pandas, including the drop_duplicates() method, duplicated() and ~ operator, subset parameter, keep parameter and the use of primary key deduplication. method. By learning and flexibly applying these techniques, we can process repeated data more conveniently, make the data cleaner, and provide a reliable foundation for subsequent data analysis and processing. I hope this article will be helpful to you in the process of learning Pandas.
The above is the detailed content of Learn these techniques to make your data tidier: a brief introduction to Pandas' duplication method. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Pandas installation tutorial: Analysis of common installation errors and their solutions, specific code examples are required Introduction: Pandas is a powerful data analysis tool that is widely used in data cleaning, data processing, and data visualization, so it is highly respected in the field of data science . However, due to environment configuration and dependency issues, you may encounter some difficulties and errors when installing pandas. This article will provide you with a pandas installation tutorial and analyze some common installation errors and their solutions. 1. Install pandas

Python can install pandas by using pip, using conda, from source code, and using the IDE integrated package management tool. Detailed introduction: 1. Use pip and run the pip install pandas command in the terminal or command prompt to install pandas; 2. Use conda and run the conda install pandas command in the terminal or command prompt to install pandas; 3. From Source code installation and more.

Pandas is a powerful data analysis tool that can easily read and process various types of data files. Among them, CSV files are one of the most common and commonly used data file formats. This article will introduce how to use Pandas to read CSV files and perform data analysis, and provide specific code examples. 1. Import the necessary libraries First, we need to import the Pandas library and other related libraries that may be needed, as shown below: importpandasaspd 2. Read the CSV file using Pan

How to use pandas to read txt files correctly requires specific code examples. Pandas is a widely used Python data analysis library. It can be used to process a variety of data types, including CSV files, Excel files, SQL databases, etc. At the same time, it can also be used to read text files, such as txt files. However, when reading txt files, we sometimes encounter some problems, such as encoding problems, delimiter problems, etc. This article will introduce how to read txt correctly using pandas

Steps to install pandas in python: 1. Open the terminal or command prompt; 2. Enter the "pip install pandas" command to install the pandas library; 3. Wait for the installation to complete, and you can import and use the pandas library in the Python script; 4. Use It is a specific virtual environment. Make sure to activate the corresponding virtual environment before installing pandas; 5. If you are using an integrated development environment, you can add the "import pandas as pd" code to import the pandas library.

Five efficient Java array deduplication methods revealed In the Java development process, we often encounter situations where we need to deduplicate arrays. Deduplication is to remove duplicate elements in an array and keep only one. This article will introduce five efficient Java array deduplication methods and provide specific code examples. Method 1: Use HashSet to deduplicate HashSet is an unordered, non-duplicate collection that automatically deduplicates when adding elements. Therefore, we can use the characteristics of HashSet to deduplicate arrays. public

Practical tips for reading txt files using pandas, specific code examples are required. In data analysis and data processing, txt files are a common data format. Using pandas to read txt files allows for fast and convenient data processing. This article will introduce several practical techniques to help you better use pandas to read txt files, along with specific code examples. Reading txt files with delimiters When using pandas to read txt files with delimiters, you can use read_c

Data processing tool: Pandas reads data in SQL databases and requires specific code examples. As the amount of data continues to grow and its complexity increases, data processing has become an important part of modern society. In the data processing process, Pandas has become one of the preferred tools for many data analysts and scientists. This article will introduce how to use the Pandas library to read data from a SQL database and provide some specific code examples. Pandas is a powerful data processing and analysis tool based on Python
