Home Technology peripherals AI A case study of using bidirectional LSTM model for text classification

A case study of using bidirectional LSTM model for text classification

Jan 24, 2024 am 10:36 AM
Artificial neural networks

A case study of using bidirectional LSTM model for text classification

The bidirectional LSTM model is a neural network used for text classification. Below is a simple example demonstrating how to use bidirectional LSTM for text classification tasks.

First, we need to import the required libraries and modules:

import os  
import numpy as np  
from keras.preprocessing.text import Tokenizer  
from keras.preprocessing.sequence import pad_sequences  
from keras.models import Sequential  
from keras.layers import Dense, Embedding, Bidirectional, LSTM  
from sklearn.model_selection import train_test_split
Copy after login

Next, we need to prepare the dataset. Here we assume that the data set already exists in the specified path and contains three files: train.txt, dev.txt and test.txt. Each file contains a sequence of text and corresponding tags. We can load the dataset using the following code:

def load_imdb_data(path):  
    assert os.path.exists(path)  
    trainset, devset, testset = [], [], []  
    with open(os.path.join(path, "train.txt"), "r") as fr:  
        for line in fr:  
            sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1)  
            trainset.append((sentence, sentence_label))  
    with open(os.path.join(path, "dev.txt"), "r") as fr:  
        for line in fr:  
            sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1)  
            devset.append((sentence, sentence_label))  
    with open(os.path.join(path, "test.txt"), "r") as fr:  
        for line in fr:  
            sentence_label, sentence = line.strip().lower().split("\t", maxsplit=1)  
            testset.append((sentence, sentence_label))  
    return trainset, devset, testset
Copy after login

After loading the dataset, we can preprocess and serialize the text. Here we use Tokenizer for text segmentation, and then pad the index sequence of each word to the same length so that it can be applied to the LSTM model.

max_features = 20000  
maxlen = 80  # cut texts after this number of words (among top max_features most common words)  
batch_size = 32  
  
print('Pad & split data into training set and dev set')  
x_train, y_train = [], []  
for sent, label in trainset:  
    x_train.append(sent)  
    y_train.append(label)  
x_train, y_train = pad_sequences(x_train, maxlen=maxlen), np.array(y_train)  
x_train, y_train = np.array(x_train), np.array(y_train)  
x_dev, y_dev = [], []  
for sent, label in devset:  
    x_dev.append(sent)  
    y_dev.append(label)  
x_dev, y_dev = pad_sequences(x_dev, maxlen=maxlen), np.array(y_dev)  
x_dev, y_dev = np.array(x_dev), np.array(y_dev)
Copy after login

Next, we can build a bidirectional LSTM model. In this model, we use two LSTM layers, one to pass information forward and one to pass information backward. The outputs of these two LSTM layers are concatenated to form a more powerful vector representing the text. Finally, we use a fully connected layer for classification.

print('Build model...')  
model = Sequential()  
model.add(Embedding(max_features, 128, input_length=maxlen))  
model.add(Bidirectional(LSTM(64)))  
model.add(LSTM(64))  
model.add(Dense(1, activation='sigmoid'))  
  
print('Compile model...')  
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
Copy after login

Now, we can train the model. We will use the dev dataset as validation data to ensure we do not overfit during training.

epochs = 10  
batch_size = 64  
  
history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_dev, y_dev))
Copy after login

After training is completed, we can evaluate the model's performance on the test set.

test_loss, test_acc = model.evaluate(x_test, y_test)  
print('Test accuracy:', test_acc)
Copy after login

The above is a simple text classification example of a two-way LSTM model. You can also try to adjust the parameters of the model, such as the number of layers, number of neurons, optimizers, etc., to get better performance. Or use pre-trained word embeddings (such as Word2Vec or GloVe) to replace the embedding layer to capture more semantic information.

The above is the detailed content of A case study of using bidirectional LSTM model for text classification. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Explore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU Explore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU Jan 22, 2024 pm 07:51 PM

In time series data, there are dependencies between observations, so they are not independent of each other. However, traditional neural networks treat each observation as independent, which limits the model's ability to model time series data. To solve this problem, Recurrent Neural Network (RNN) was introduced, which introduced the concept of memory to capture the dynamic characteristics of time series data by establishing dependencies between data points in the network. Through recurrent connections, RNN can pass previous information into the current observation to better predict future values. This makes RNN a powerful tool for tasks involving time series data. But how does RNN achieve this kind of memory? RNN realizes memory through the feedback loop in the neural network. This is the difference between RNN and traditional neural network.

Definition and structural analysis of fuzzy neural network Definition and structural analysis of fuzzy neural network Jan 22, 2024 pm 09:09 PM

Fuzzy neural network is a hybrid model that combines fuzzy logic and neural networks to solve fuzzy or uncertain problems that are difficult to handle with traditional neural networks. Its design is inspired by the fuzziness and uncertainty in human cognition, so it is widely used in control systems, pattern recognition, data mining and other fields. The basic architecture of fuzzy neural network consists of fuzzy subsystem and neural subsystem. The fuzzy subsystem uses fuzzy logic to process input data and convert it into fuzzy sets to express the fuzziness and uncertainty of the input data. The neural subsystem uses neural networks to process fuzzy sets for tasks such as classification, regression or clustering. The interaction between the fuzzy subsystem and the neural subsystem makes the fuzzy neural network have more powerful processing capabilities and can

Calculating floating point operands (FLOPS) for neural networks Calculating floating point operands (FLOPS) for neural networks Jan 22, 2024 pm 07:21 PM

FLOPS is one of the standards for computer performance evaluation, used to measure the number of floating point operations per second. In neural networks, FLOPS is often used to evaluate the computational complexity of the model and the utilization of computing resources. It is an important indicator used to measure the computing power and efficiency of a computer. A neural network is a complex model composed of multiple layers of neurons used for tasks such as data classification, regression, and clustering. Training and inference of neural networks requires a large number of matrix multiplications, convolutions and other calculation operations, so the computational complexity is very high. FLOPS (FloatingPointOperationsperSecond) can be used to measure the computational complexity of neural networks to evaluate the computational resource usage efficiency of the model. FLOP

A case study of using bidirectional LSTM model for text classification A case study of using bidirectional LSTM model for text classification Jan 24, 2024 am 10:36 AM

The bidirectional LSTM model is a neural network used for text classification. Below is a simple example demonstrating how to use bidirectional LSTM for text classification tasks. First, we need to import the required libraries and modules: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Twin Neural Network: Principle and Application Analysis Twin Neural Network: Principle and Application Analysis Jan 24, 2024 pm 04:18 PM

Siamese Neural Network is a unique artificial neural network structure. It consists of two identical neural networks that share the same parameters and weights. At the same time, the two networks also share the same input data. This design was inspired by twins, as the two neural networks are structurally identical. The principle of Siamese neural network is to complete specific tasks, such as image matching, text matching and face recognition, by comparing the similarity or distance between two input data. During training, the network attempts to map similar data to adjacent regions and dissimilar data to distant regions. In this way, the network can learn how to classify or match different data to achieve corresponding

causal convolutional neural network causal convolutional neural network Jan 24, 2024 pm 12:42 PM

Causal convolutional neural network is a special convolutional neural network designed for causality problems in time series data. Compared with conventional convolutional neural networks, causal convolutional neural networks have unique advantages in retaining the causal relationship of time series and are widely used in the prediction and analysis of time series data. The core idea of ​​causal convolutional neural network is to introduce causality in the convolution operation. Traditional convolutional neural networks can simultaneously perceive data before and after the current time point, but in time series prediction, this may lead to information leakage problems. Because the prediction results at the current time point will be affected by the data at future time points. The causal convolutional neural network solves this problem. It can only perceive the current time point and previous data, but cannot perceive future data.

Image denoising using convolutional neural networks Image denoising using convolutional neural networks Jan 23, 2024 pm 11:48 PM

Convolutional neural networks perform well in image denoising tasks. It utilizes the learned filters to filter the noise and thereby restore the original image. This article introduces in detail the image denoising method based on convolutional neural network. 1. Overview of Convolutional Neural Network Convolutional neural network is a deep learning algorithm that uses a combination of multiple convolutional layers, pooling layers and fully connected layers to learn and classify image features. In the convolutional layer, the local features of the image are extracted through convolution operations, thereby capturing the spatial correlation in the image. The pooling layer reduces the amount of calculation by reducing the feature dimension and retains the main features. The fully connected layer is responsible for mapping learned features and labels to implement image classification or other tasks. The design of this network structure makes convolutional neural networks useful in image processing and recognition.

Steps to write a simple neural network using Rust Steps to write a simple neural network using Rust Jan 23, 2024 am 10:45 AM

Rust is a systems-level programming language focused on safety, performance, and concurrency. It aims to provide a safe and reliable programming language suitable for scenarios such as operating systems, network applications, and embedded systems. Rust's security comes primarily from two aspects: the ownership system and the borrow checker. The ownership system enables the compiler to check code for memory errors at compile time, thus avoiding common memory safety issues. By forcing checking of variable ownership transfers at compile time, Rust ensures that memory resources are properly managed and released. The borrow checker analyzes the life cycle of the variable to ensure that the same variable will not be accessed by multiple threads at the same time, thereby avoiding common concurrency security issues. By combining these two mechanisms, Rust is able to provide

See all articles