Home Technology peripherals AI Optimized Proximal Policy Algorithm (PPO)

Optimized Proximal Policy Algorithm (PPO)

Jan 24, 2024 pm 12:39 PM
machine learning Algorithm concept

Optimized Proximal Policy Algorithm (PPO)

Proximal Policy Optimization (PPO) is a reinforcement learning algorithm designed to solve the problems of unstable training and low sample efficiency in deep reinforcement learning. The PPO algorithm is based on policy gradient and trains the agent by optimizing the policy to maximize long-term returns. Compared with other algorithms, PPO has the advantages of simplicity, efficiency, and stability, so it is widely used in academia and industry. PPO improves the training process through two key concepts: proximal policy optimization and shearing the objective function. Proximal policy optimization maintains training stability by limiting the size of policy updates to ensure that each update is within an acceptable range. The shear objective function is the core idea of ​​the PPO algorithm. When updating the policy, it uses the shear objective function to constrain the magnitude of the policy update to avoid excessive updates that lead to unstable training. The PPO algorithm shows good performance in practice

In the PPO algorithm, the strategy is represented by a neural network. Neural networks accept the current state as input and output a probability value for each available action. At each time step, the agent chooses an action based on the probability distribution output by the policy network. The agent then performs the action and observes the next state and reward signal. This process will be repeated until the mission is completed. By repeating this process, the agent can learn how to choose the optimal action based on the current state to maximize the cumulative reward. The PPO algorithm balances the exploration and utilization of strategies by optimizing the step size and update amplitude of strategy updates, thereby improving the stability and performance of the algorithm.

The core idea of ​​the PPO algorithm is to use the proximal policy optimization method for policy optimization to avoid the problem of performance degradation caused by too aggressive policy updates. Specifically, the PPO algorithm adopts a shear function to limit the difference between the new policy and the old policy within a given range. This shear function can be linear, quadratic or exponential, etc. By using the shear function, the PPO algorithm can balance the intensity of policy updates, thereby improving the stability and convergence speed of the algorithm. This method of proximal policy optimization enables the PPO algorithm to show good performance and robustness in reinforcement learning tasks.

The core of the PPO (Proximal Policy Optimization) algorithm is to improve the adaptability of the policy in the current environment by updating the parameters of the policy network. Specifically, the PPO algorithm updates the parameters of the policy network by maximizing the PPO objective function. This objective function consists of two parts: one is the optimization goal of the strategy, which is to maximize long-term returns; the other is a constraint term used to limit the difference between the updated strategy and the original strategy. In this way, the PPO algorithm can effectively update the parameters of the policy network and improve the performance of the policy while ensuring stability.

In the PPO algorithm, in order to constrain the difference between the updated policy and the original policy, we use a technique called clipping. Specifically, we compare the updated policy with the original policy and limit the difference between them to no more than a small threshold. The purpose of this pruning technology is to ensure that the updated policy will not be too far away from the original policy, thereby avoiding excessive updates during the training process, which will lead to training instability. Through clipping techniques, we are able to balance the magnitude of updates and ensure training stability and convergence.

The PPO algorithm utilizes empirical data by sampling multiple trajectories, thereby improving sample efficiency. During training, multiple trajectories are sampled and then used to estimate the long-term reward and gradient of the policy. This sampling technique can reduce the variance during training, thereby improving the stability and efficiency of training.

The optimization goal of the PPO algorithm is to maximize the expected return, where return refers to the cumulative reward obtained after executing a series of actions starting from the current state. The PPO algorithm uses a method called "importance sampling" to estimate the policy gradient, that is, for the current state and action, compare the probability ratio of the current policy and the old policy, use it as a weight, multiply it by the reward value, and finally get the policy gradient.

In short, the PPO algorithm is an efficient, stable, and easy-to-implement strategy optimization algorithm suitable for solving continuous control problems. It uses proximal policy optimization methods to control the magnitude of policy updates, and uses importance sampling and value function clipping methods to estimate policy gradients. The combination of these techniques makes the PPO algorithm perform well in a variety of environments, making it one of the most popular reinforcement learning algorithms currently.

The above is the detailed content of Optimized Proximal Policy Algorithm (PPO). For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

15 recommended open source free image annotation tools 15 recommended open source free image annotation tools Mar 28, 2024 pm 01:21 PM

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Identify overfitting and underfitting through learning curves Identify overfitting and underfitting through learning curves Apr 29, 2024 pm 06:50 PM

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

Transparent! An in-depth analysis of the principles of major machine learning models! Transparent! An in-depth analysis of the principles of major machine learning models! Apr 12, 2024 pm 05:55 PM

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

The evolution of artificial intelligence in space exploration and human settlement engineering The evolution of artificial intelligence in space exploration and human settlement engineering Apr 29, 2024 pm 03:25 PM

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

See all articles