Home Technology peripherals AI Learning method for zero-based image recognition

Learning method for zero-based image recognition

Jan 24, 2024 pm 03:39 PM
machine learning Image Processing

Learning method for zero-based image recognition

Image recognition based on zero-shot learning is an emerging technology, which is different from traditional image recognition methods. Traditional image recognition requires learning features and classification rules through training data, while zero-shot learning does not require pre-training the model. It performs real-time classification based on the characteristics of the image to be recognized, thereby achieving fast and accurate recognition. Image recognition with zero-shot learning has been widely used in smart home, face recognition, smart security and other fields. It can help smart home devices quickly identify user needs and respond accordingly. In face recognition, zero-shot learning can accurately identify faces based on their features and improve recognition accuracy. In the field of intelligent security, zero-shot learning can help identify dangerous objects and provide a safer and more reliable monitoring system. In short, image recognition technology based on zero-shot learning is fast and accurate, providing more intelligent solutions for various fields.

Zero-shot image recognition is mainly divided into two stages: feature extraction and classification.

In the feature extraction stage, the zero-shot learning image recognition algorithm will automatically analyze various features in the image to be recognized, such as color, shape, texture, etc., and represent them as vectors . These vectors can be regarded as the "fingerprints" of the image to be recognized and used for subsequent classification.

In the classification stage, the zero-shot learning image recognition algorithm uses feature vectors to compare with previously learned category feature vectors to find the category closest to the image to be recognized. These category feature vectors are extracted from other images, and they represent features of each category. When recognizing a new image, the zero-shot learning image recognition algorithm assigns the image to be recognized to the closest category based on how similar it is to the feature vectors of each category.

In order to better understand zero-shot learning, we can illustrate it through an example. We adopt the Animals with Attributes 2 (AWA2) dataset, which contains 50 different animal categories, each category is described by 85 attributes. We randomly selected 10 categories as the training set and the remaining 40 categories as the testing set. We used an attribute-based approach for model training.

First, we need to import the necessary libraries and datasets:

import numpy as np
import pandas as pd
import scipy.io as sio
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

# 导入数据集
data = sio.loadmat('data/awa2.mat')
train_labels = data['train_labels'].astype(int).squeeze()
test_labels = data['test_labels'].astype(int).squeeze()
train_attributes = StandardScaler().fit_transform(data['train_attributes'])
test_attributes = StandardScaler().fit_transform(data['test_attributes'])
Copy after login

Then, we need to convert the attribute descriptions into vectors in the embedding space. We use principal component analysis (PCA) to convert attribute descriptions into vectors in embedding space. We select the first 10 principal components as embedding vectors.

from sklearn.decomposition import PCA

# 将属性描述转换为嵌入空间中的向量
pca = PCA(n_components=10)
train_embed = pca.fit_transform(train_attributes)
test_embed = pca.transform(test_attributes)
Copy after login

Next, we need to train a classifier to predict the categories in the test set. We use logistic regression as classifier.

# 训练分类器
clf = LogisticRegression(random_state=0, max_iter=1000)
clf.fit(train_embed, train_labels)

# 在测试集上进行预测
predicted_labels = clf.predict(test_embed)
Copy after login

Finally, we can calculate the accuracy to evaluate the performance of the model.

# 计算准确率
accuracy = np.mean(predicted_labels == test_labels)
print('Accuracy:', accuracy)
Copy after login

In this example, we used an attribute-based approach to train the model and selected the first 10 principal components as embedding vectors. Finally, we got a model with an accuracy of 0.55 on the test set.

The above is the detailed content of Learning method for zero-based image recognition. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Identify overfitting and underfitting through learning curves Identify overfitting and underfitting through learning curves Apr 29, 2024 pm 06:50 PM

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

Transparent! An in-depth analysis of the principles of major machine learning models! Transparent! An in-depth analysis of the principles of major machine learning models! Apr 12, 2024 pm 05:55 PM

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

The evolution of artificial intelligence in space exploration and human settlement engineering The evolution of artificial intelligence in space exploration and human settlement engineering Apr 29, 2024 pm 03:25 PM

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Outlook on future trends of Golang technology in machine learning Outlook on future trends of Golang technology in machine learning May 08, 2024 am 10:15 AM

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.

Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude May 30, 2024 pm 01:24 PM

MetaFAIR teamed up with Harvard to provide a new research framework for optimizing the data bias generated when large-scale machine learning is performed. It is known that the training of large language models often takes months and uses hundreds or even thousands of GPUs. Taking the LLaMA270B model as an example, its training requires a total of 1,720,320 GPU hours. Training large models presents unique systemic challenges due to the scale and complexity of these workloads. Recently, many institutions have reported instability in the training process when training SOTA generative AI models. They usually appear in the form of loss spikes. For example, Google's PaLM model experienced up to 20 loss spikes during the training process. Numerical bias is the root cause of this training inaccuracy,

See all articles