Table of Contents
Algorithms and principles used by gesture recognition models
结论
Home Backend Development Python Tutorial Explore the algorithms and principles of gesture recognition models (create a simple gesture recognition training model in Python)

Explore the algorithms and principles of gesture recognition models (create a simple gesture recognition training model in Python)

Jan 24, 2024 pm 05:51 PM
AI machine learning deep learning

Explore the algorithms and principles of gesture recognition models (create a simple gesture recognition training model in Python)

Gesture recognition is an important research area in the field of computer vision. Its purpose is to determine the meaning of gestures by parsing human hand movements in video streams or image sequences. Gesture recognition has a wide range of applications, such as gesture-controlled smart homes, virtual reality and games, security monitoring and other fields. This article will introduce the algorithms and principles used in gesture recognition models, and use Python to create a simple gesture recognition training model.

Algorithms and principles used by gesture recognition models

The algorithms and principles used by gesture recognition models are diverse, including depth-based learned models, traditional machine learning models, rule-based methods, and traditional image processing methods. The principles and characteristics of these methods will be introduced below.

1. Model based on deep learning

Deep learning is one of the most popular machine learning methods currently. In the field of gesture recognition, deep learning models are also widely used. Deep learning models learn from large amounts of data to extract features and then use these features to classify. In gesture recognition, deep learning models often use convolutional neural networks (CNN) or recurrent neural networks (RNN).

CNN is a special type of neural network that can effectively process image data. CNN contains multiple convolutional layers and pooling layers. The convolutional layer can extract the features of the image, and the pooling layer can reduce the size of the image. CNN also contains multiple fully connected layers for classification.

RNN is a neural network suitable for sequence data. In gesture recognition, RNN usually uses long short-term memory network (LSTM) or gated recurrent unit (GRU). RNN can predict the next gesture by learning previous gesture sequences. LSTM and GRU can avoid the vanishing gradient problem of RNN, allowing the model to learn longer gesture sequences.

The model based on deep learning has the following characteristics:

  • can handle complex gesture sequences;
  • can Automatically extract features;
  • requires a large amount of data for training;
  • takes a long time to train;
  • requires high computing resources.

2. Traditional machine learning models

Traditional machine learning models include support vector machines (SVM), decision trees, Random forest etc. These models usually use hand-designed features such as SIFT, HOG, etc. These features can extract information such as shape and texture of gestures.

    ##Traditional machine learning models have the following characteristics:
  • Can handle simpler gesture sequences;
  • Requires manual design of features;
  • The training time is shorter;
  • Requires a small amount of data for training;
  • The training results are easier to interpret.

3. Rule-based method

The rule-based method is a method of manually designing rules to judge gestures. For example, rules can be designed to determine the direction, shape, speed, etc. of gestures. This approach requires manual design of rules and therefore requires specialized knowledge and experience.

The rule-based method has the following characteristics:

    can be quickly designed and implemented;
  • requires professional Knowledge and experience;
  • can only handle specific gesture types;
  • is not suitable for complex gesture sequences.

4. Traditional image processing methods

Traditional image processing methods usually use thresholds, edge detection, morphology, etc. Technology processes gesture images to extract gesture features. These features can be used for gesture classification.

Traditional image processing methods have the following characteristics:

    can handle simple gestures;
  • requires manual Design features;
  • The training time is shorter;
  • Requires a small amount of data for training;
  • The training results are easier to interpret.

Use Python to create a simple gesture recognition training model

In this section, we will use Python to create a simple gesture Identify the training model that will use deep learning based methods. Specifically, we will use the Keras and TensorFlow libraries to build and train the model.

1. Prepare data

First, we need to prepare the gesture data set. Here we use a dataset called "ASL Alphabet", which contains gesture images of the American Sign Language letters A-Z. The dataset can be downloaded from Kaggle.

2. Data preprocessing

Next, we need to preprocess the gesture image. We will use the OpenCV library to read and process images. Specifically, we will first resize the images to the same size, then convert them to grayscale images and normalize the pixel values.

import cv2
import os
import numpy as np

IMG_SIZE = 200

def preprocess_data(data_dir):
    X = []
    y = []
    for folder_name in os.listdir(data_dir):
        label = folder_name
        folder_path = os.path.join(data_dir, folder_name)
        for img_name in os.listdir(folder_path):
            img_path = os.path.join(folder_path, img_name)
            img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
            img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
            img = img/255.0
            X.append(img)
            y.append(label)
    X = np.array(X)
    y = np.array(y)
    return X, y
Copy after login

3. Build the model

Next, we will build a model based on a convolutional neural network. Specifically, we will use the Sequential model from the Keras library to build the model. The model contains multiple convolutional and pooling layers, as well as multiple fully connected layers.

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

def build_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 1)))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(64, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(128, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Conv2D(256, (3, 3), activation='relu'))
    model.add(MaxPooling2D((2, 2)))
    model.add(Flatten())
    model.add(Dense(512, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(29, activation='softmax'))
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
Copy after login

4. Training model

接下来,我们将使用准备好的数据集和构建好的模型来训练模型。我们将使用Keras库中的fit方法来训练模型。

X_train, y_train = preprocess_data('asl_alphabet_train')
X_test, y_test = preprocess_data('asl_alphabet_test')

from keras.utils import to_categorical

y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

model = build_model()
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_data=(X_test, y_test))
Copy after login

5.评估模型

最后,我们将评估模型的性能。我们将使用Keras库中的evaluate方法来评估模型在测试集上的性能。

test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy:', test_acc)
Copy after login

结论

本文介绍了手势识别模型使用的算法和原理,并使用Python创建了一个简单的手势识别训练模型。我们使用了基于深度学习的方法,并使用Keras和TensorFlow库来构建和训练模型。最后,我们评估了模型在测试集上的性能。手势识别是一个复杂的问题,需要综合考虑多个因素,例如手势序列的长度、手势的复杂度等。因此,在实际应用中,需要根据具体需求选择合适的算法和模型。

The above is the detailed content of Explore the algorithms and principles of gesture recognition models (create a simple gesture recognition training model in Python). For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

AlphaFold 3 is launched, comprehensively predicting the interactions and structures of proteins and all living molecules, with far greater accuracy than ever before AlphaFold 3 is launched, comprehensively predicting the interactions and structures of proteins and all living molecules, with far greater accuracy than ever before Jul 16, 2024 am 12:08 AM

Editor | Radish Skin Since the release of the powerful AlphaFold2 in 2021, scientists have been using protein structure prediction models to map various protein structures within cells, discover drugs, and draw a "cosmic map" of every known protein interaction. . Just now, Google DeepMind released the AlphaFold3 model, which can perform joint structure predictions for complexes including proteins, nucleic acids, small molecules, ions and modified residues. The accuracy of AlphaFold3 has been significantly improved compared to many dedicated tools in the past (protein-ligand interaction, protein-nucleic acid interaction, antibody-antigen prediction). This shows that within a single unified deep learning framework, it is possible to achieve

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

See all articles