Home Backend Development Python Tutorial A concise guide to using numpy functions

A concise guide to using numpy functions

Jan 26, 2024 am 10:34 AM

A concise guide to using numpy functions

Easy to use NumPy function, specific code examples are required

NumPy is a very commonly used scientific computing library in Python, which provides a wealth of functions and tools to handle arrays and matrices. In this article, we will introduce some commonly used functions in NumPy and how to use them, and demonstrate their functions through specific code examples.

1. Create arrays

Using NumPy can easily create various types of arrays. The following are several common ways to create arrays:

  1. Use the numpy.array function to create a one-dimensional array:

    import numpy as np
    
    a = np.array([1, 2, 3, 4, 5])
    print(a)
    Copy after login

    Output:

    [1 2 3 4 5]
    Copy after login
  2. Use the numpy.zeros function to create an array whose elements are all 0:

    b = np.zeros((3, 4))
    print(b)
    Copy after login

    Output:

    [[0. 0. 0. 0.]
     [0. 0. 0. 0.]
     [0. 0. 0. 0.]]
    Copy after login
  3. Use the numpy.ones function to create an array whose elements are all 0 Array of 1:

    c = np.ones((2, 3))
    print(c)
    Copy after login

    Output:

    [[1. 1. 1.]
     [1. 1. 1.]]
    Copy after login
  4. Use numpy.eye function to create an identity matrix:

    d = np.eye(3)
    print(d)
    Copy after login

    Output:

    [[1. 0. 0.]
     [0. 1. 0.]
     [0. 0. 1.]]
    Copy after login

2. Array attributes and basic operations

NumPy arrays have some commonly used attributes and basic operations. Here are some examples:

  1. Shape of the array:

    print(a.shape)  # 输出(5,)
    print(b.shape)  # 输出(3, 4)
    print(c.shape)  # 输出(2, 3)
    print(d.shape)  # 输出(3, 3)
    Copy after login
  2. Dimensions of the array:

    print(a.ndim)  # 输出1
    print(b.ndim)  # 输出2
    print(c.ndim)  # 输出2
    print(d.ndim)  # 输出2
    Copy after login
  3. Number of elements of the array:

    print(a.size)  # 输出5
    print(b.size)  # 输出12
    print(c.size)  # 输出6
    print(d.size)  # 输出9
    Copy after login
  4. Data type of array:

    print(a.dtype)  # 输出int64
    print(b.dtype)  # 输出float64
    print(c.dtype)  # 输出float64
    print(d.dtype)  # 输出float64
    Copy after login

3. Array operations

NumPy provides a wealth of array operations. Here are some examples:

  1. Addition and subtraction of arrays:

    x = np.array([1, 2, 3])
    y = np.array([4, 5, 6])
    
    print(x + y)  # 输出[5 7 9]
    print(x - y)  # 输出[-3 -3 -3]
    Copy after login
  2. Multiplication and division of arrays:

    print(x * y)  # 输出[4 10 18]
    print(x / y)  # 输出[0.25 0.4  0.5 ]
    Copy after login
  3. Sum of squares of arrays Square root:

    print(np.square(x))  # 输出[1 4 9]
    print(np.sqrt(y))  # 输出[2. 2.236 2.449]
    Copy after login
  4. Matrix multiplication of arrays:

    a = np.array([[1, 2], [3, 4]])
    b = np.array([[5, 6], [7, 8]])
    
    print(np.dot(a, b))  # 输出[[19 22] [43 50]]
    Copy after login

4. Array indexing and slicing

NumPy provides Powerful features for accessing array elements, here are some examples:

  1. Index of array:

    a = np.array([1, 2, 3, 4, 5])
    
    print(a[0])  # 输出1
    print(a[-1])  # 输出5
    Copy after login
  2. Slice of array:

    b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
    
    print(b[0])  # 输出[1 2 3 4]
    print(b[:, 0])  # 输出[1 5 9]
    print(b[1:3, 1:3])  # 输出[[6 7] [10 11]]
    Copy after login

5. Array statistical operations

NumPy provides a wealth of array statistical operations. Here are some examples:

  1. Calculate the sum of an array , mean and standard deviation:

    a = np.array([1, 2, 3, 4, 5])
    
    print(np.sum(a))  # 输出15
    print(np.mean(a))  # 输出3.0
    print(np.std(a))  # 输出1.41421356
    Copy after login
  2. Calculate the minimum and maximum values ​​of the array:

    b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    
    print(np.min(b))  # 输出1
    print(np.max(b))  # 输出9
    Copy after login

Summary:

This article introduces some common functions and operation methods in the NumPy library, and demonstrates their usage through specific code examples. By learning these functions and operations, you can better understand and apply the NumPy library for scientific computing and data analysis. I hope this article can help you learn NumPy!

The above is the detailed content of A concise guide to using numpy functions. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Download Files in Python How to Download Files in Python Mar 01, 2025 am 10:03 AM

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How to Work With PDF Documents Using Python How to Work With PDF Documents Using Python Mar 02, 2025 am 09:54 AM

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

How to Cache Using Redis in Django Applications How to Cache Using Redis in Django Applications Mar 02, 2025 am 10:10 AM

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Introducing the Natural Language Toolkit (NLTK) Introducing the Natural Language Toolkit (NLTK) Mar 01, 2025 am 10:05 AM

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

See all articles