Shared variables and thread.Lock
In Java, the value of a shared variable in a thread can become stalled unless you use atomic operations or other thread synchronization mechanisms.
Given the GIL in CPython. I see value in Lock inc where:
Even in the confusing a = 1
idiom, there are multiple steps performed before the assignment. To prevent race conditions.
But in a case like a = 1
, there is no lock. After a thread updates a, is it possible to have threads A and B read different values of a?
Another way to ask this question is, does Lock ensure shared value propagation, whereas the absence of Lock does not?
Correct answer
The problem is not that a = 1
. If the only thing you do in your entire code is set a
to various values, then you don't need a lock.
However, if you are setting a = 1
while somewhere else in your code is doing a = a 1
, then you need to lock them. You lock a = 1
so that if someone else increments a
, it will happen exactly before or after you set a
.
So in almost all cases, unless you really know what you are doing, a lock is the simplest solution.
The above is the detailed content of Shared variables and thread.Lock. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



There is a parent-child relationship between functions and goroutines in Go. The parent goroutine creates the child goroutine, and the child goroutine can access the variables of the parent goroutine but not vice versa. Create a child goroutine using the go keyword, and the child goroutine is executed through an anonymous function or a named function. A parent goroutine can wait for child goroutines to complete via sync.WaitGroup to ensure that the program does not exit before all child goroutines have completed.

Functions are used to perform tasks sequentially and are simple and easy to use, but they have problems with blocking and resource constraints. Goroutine is a lightweight thread that executes tasks concurrently. It has high concurrency, scalability, and event processing capabilities, but it is complex to use, expensive, and difficult to debug. In actual combat, Goroutine usually has better performance than functions when performing concurrent tasks.

In a multi-threaded environment, the behavior of PHP functions depends on their type: Normal functions: thread-safe, can be executed concurrently. Functions that modify global variables: unsafe, need to use synchronization mechanism. File operation function: unsafe, need to use synchronization mechanism to coordinate access. Database operation function: Unsafe, database system mechanism needs to be used to prevent conflicts.

Methods for inter-thread communication in C++ include: shared memory, synchronization mechanisms (mutex locks, condition variables), pipes, and message queues. For example, use a mutex lock to protect a shared counter: declare a mutex lock (m) and a shared variable (counter); each thread updates the counter by locking (lock_guard); ensure that only one thread updates the counter at a time to prevent race conditions.

The C++ concurrent programming framework features the following options: lightweight threads (std::thread); thread-safe Boost concurrency containers and algorithms; OpenMP for shared memory multiprocessors; high-performance ThreadBuildingBlocks (TBB); cross-platform C++ concurrency interaction Operation library (cpp-Concur).

The volatile keyword is used to modify variables to ensure that all threads can see the latest value of the variable and to ensure that modification of the variable is an uninterruptible operation. Main application scenarios include multi-threaded shared variables, memory barriers and concurrent programming. However, it should be noted that volatile does not guarantee thread safety and may reduce performance. It should only be used when absolutely necessary.

Function locks and synchronization mechanisms in C++ concurrent programming are used to manage concurrent access to data in a multi-threaded environment and prevent data competition. The main mechanisms include: Mutex (Mutex): a low-level synchronization primitive that ensures that only one thread accesses the critical section at a time. Condition variable (ConditionVariable): allows threads to wait for conditions to be met and provides inter-thread communication. Atomic operation: Single instruction operation, ensuring single-threaded update of variables or data to prevent conflicts.

Program performance optimization methods include: Algorithm optimization: Choose an algorithm with lower time complexity and reduce loops and conditional statements. Data structure selection: Select appropriate data structures based on data access patterns, such as lookup trees and hash tables. Memory optimization: avoid creating unnecessary objects, release memory that is no longer used, and use memory pool technology. Thread optimization: identify tasks that can be parallelized and optimize the thread synchronization mechanism. Database optimization: Create indexes to speed up data retrieval, optimize query statements, and use cache or NoSQL databases to improve performance.
