Go producer-consumer avoids deadlocks
I have a code about consumer and producer. Although I asked this question here for code review, and a large part of the idea was derived from this thread, here is the code in the playground.
- This code has multiple producers and consumers sharing the same channel.
- This code has an error handling mechanism, if any worker (producer or consumer) makes an error, all workers should stop.
I'm worried about a deadlock scenario where all consumers are down but producers are still adding data to the shared channel. To "mitigate" this problem, I added a context check before adding the data to the data queue - specifically line 85 in the go playground.
However, a deadlock may still occur if the producer checks context.done() on line 85 and then cancels the context, causing all consumers to close and then ProducerTrying to insert data into the queue?
If so, how to alleviate it.
Repost code:
package main import ( "context" "fmt" "sync" ) func main() { a1 := []int{1, 2, 3, 4, 5} a2 := []int{5, 4, 3, 1, 1} a3 := []int{6, 7, 8, 9} a4 := []int{1, 2, 3, 4, 5} a5 := []int{5, 4, 3, 1, 1} a6 := []int{6, 7, 18, 9} arrayOfArray := [][]int{a1, a2, a3, a4, a5, a6} ctx, cancel := context.WithCancel(context.Background()) ch1 := read(ctx, arrayOfArray) messageCh := make(chan int) errCh := make(chan error) producerWg := &sync.WaitGroup{} for i := 0; i < 3; i++ { producerWg.Add(1) producer(ctx, producerWg, ch1, messageCh, errCh) } consumerWg := &sync.WaitGroup{} for i := 0; i < 3; i++ { consumerWg.Add(1) consumer(ctx, consumerWg, messageCh, errCh) } firstError := handleAllErrors(ctx, cancel, errCh) producerWg.Wait() close(messageCh) consumerWg.Wait() close(errCh) fmt.Println(<-firstError) } func read(ctx context.Context, arrayOfArray [][]int) <-chan []int { ch := make(chan []int) go func() { defer close(ch) for i := 0; i < len(arrayOfArray); i++ { select { case <-ctx.Done(): return case ch <- arrayOfArray[i]: } } }() return ch } func producer(ctx context.Context, wg *sync.WaitGroup, in <-chan []int, messageCh chan<- int, errCh chan<- error) { go func() { defer wg.Done() for { select { case <-ctx.Done(): return case arr, ok := <-in: if !ok { return } for i := 0; i < len(arr); i++ { // simulating an error. //if arr[i] == 10 { // errCh <- fmt.Errorf("producer interrupted") //} select { case <-ctx.Done(): return case messageCh <- 2 * arr[i]: } } } } }() } func consumer(ctx context.Context, wg *sync.WaitGroup, messageCh <-chan int, errCh chan<- error) { go func() { wg.Done() for { select { case <-ctx.Done(): return case n, ok := <-messageCh: if !ok { return } fmt.Println("consumed: ", n) // simulating erros //if n == 10 { // errCh <- fmt.Errorf("output error during write") //} } } }() } func handleAllErrors(ctx context.Context, cancel context.CancelFunc, errCh chan error) <-chan error { firstErrCh := make(chan error, 1) isFirstError := true go func() { defer close(firstErrCh) for err := range errCh { select { case <-ctx.Done(): default: cancel() } if isFirstError { firstErrCh <- err isFirstError = !isFirstError } } }() return firstErrCh }
Correct answer
No you are fine, this will not deadlock on producer writes because you wrap the channel writes in select
statement, so even if the channel write can't happen because the consumer has terminated, you'll still hit the context cancellation clause and terminate your producer.
Just to demonstrate the concept, you can run it and see that it does not deadlock, although it is trying to write to the channel without a reader.
package main import ( "context" "fmt" "time" ) func main() { ctx, cancel := context.WithCancel(context.Background()) ch := make(chan struct{}) go func() { time.Sleep(1 * time.Second) cancel() }() select { case ch <- struct{}{}: case <-ctx.Done(): fmt.Println("context canceled") } fmt.Println("bye!") }
This is its playground link.
About some code simplification. If this were any kind of real life code, I'd probably just use group
from golang.org/x/sync/errgroup
. Or take a hint from them and utilize sync.once
and wrap all producers and consumers with a function that generates a goroutine and can handle errors without using more in the error Complex error channel exhaust code handling functions.
The above is the detailed content of Go producer-consumer avoids deadlocks. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

The article discusses the go fmt command in Go programming, which formats code to adhere to official style guidelines. It highlights the importance of go fmt for maintaining code consistency, readability, and reducing style debates. Best practices fo

This article introduces a variety of methods and tools to monitor PostgreSQL databases under the Debian system, helping you to fully grasp database performance monitoring. 1. Use PostgreSQL to build-in monitoring view PostgreSQL itself provides multiple views for monitoring database activities: pg_stat_activity: displays database activities in real time, including connections, queries, transactions and other information. pg_stat_replication: Monitors replication status, especially suitable for stream replication clusters. pg_stat_database: Provides database statistics, such as database size, transaction commit/rollback times and other key indicators. 2. Use log analysis tool pgBadg

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...
