I have an image displayed using imshow. Then I add all rows and display the maximum value. I do the same thing with the columns. In the display graph, I want the x-axis and y-axis of the image to coincide with the x-axis of the added columns and the y-axis of the added rows. However, despite setting sharex
and sharey
respectively, it doesn't seem to work. I wish I could only do one at a time:
import numpy as np import matplotlib.pyplot as plt from scipy.signal import argrelextrema import matplotlib.animation as animation fig= plt.figure() gs= fig.add_gridspec(2,2, height_ratios=[1, 0.1], width_ratios=[1, 0.1], hspace=0, wspace=0) ax1= fig.add_subplot(gs[0,0]) ax2= fig.add_subplot(gs[1,0], sharex=ax1) ax3= fig.add_subplot(gs[0,1], sharey=ax1) frameNumber= 10 imgs= [] for i in range(frameNumber): np.random.seed(i) randomImage= np.random.random((5,5)) sumX= np.sum(randomImage, axis=0) sumY= np.sum(randomImage, axis=1) dataRange= np.arange(len(sumX)) randomDataSet= np.random.random((10)) randomMaximalX= argrelextrema(sumX, np.greater) randomMaximalY= argrelextrema(sumY, np.greater) img1= ax1.imshow(randomImage, animated=True) img2= ax2.plot(dataRange, sumX,animated=True)[0] img3= ax3.plot(sumY,dataRange,animated=True)[0] img4= ax2.vlines(x=randomMaximalX, ymin=0, ymax=5, animated=True, linestyles="dashed") img5= ax3.hlines(y=randomMaximalY, xmin=0, xmax=5, animated=True, linestyles="dashed") imgs.append([img1, img2, img3, img4, img5]) ani= animation.ArtistAnimation(fig, imgs, interval=1000, blit=False) plt.show()
The current result is this:
Actually I want something like this:
The h values of the two graphs are the same. Thank you so much!
There are two ways to solve this problem:
axes.pcolormesh
instead of axes.imshow
axes.pcolormesh
does not force the resulting image to be square (1:1 aspect ratio), so your cells will be rectangular, but they will fill the space provided appropriately.
from numpy.random import default_rng import matplotlib.pyplot as plt rng = default_rng(0) image = rng.uniform(1, 10, size=(5, 5)) mosaic = [ ['main', 'right'], ['bottom', '.' ], ] fig, axd = plt.subplot_mosaic( mosaic, gridspec_kw={ 'height_ratios': [1, .1], 'width_ratios': [1, .1], 'wspace': .05, 'hspace': .05, }, sharex=true, sharey=true, ) axd['main'].pcolormesh(image) plt.show()
If you want to stick with axes.imshow
then you need to adjust
Manually adjust the aspect ratio of each plot. To get the correct ratio you need
Calculated based on height_ratio
and width_ratio
provided to gridspec
from numpy.random import default_rng import matplotlib.pyplot as plt rng = default_rng(0) image = rng.uniform(1, 10, size=(5, 5)) mosaic = [ ['main', 'right'], ['bottom', '.' ], ] fig, axd = plt.subplot_mosaic( mosaic, sharex=True, sharey=True, gridspec_kw={ 'height_ratios': [1, .1], 'width_ratios': [1, .1], # change values to move adjacent plots closer to the main 'wspace': .05, 'hspace': .05, }, ) axd['main'].imshow(image) axd['main'].set_anchor('SE') # move main plot to bottom-right of bounding-box # calculate the width and height scales gs = axd['main'].get_gridspec() # you can also save these values from your `gridspec_kw` width_scale = gs.get_width_ratios()[0] / gs.get_width_ratios()[1] height_scale = gs.get_height_ratios()[0] / gs.get_height_ratios()[1] # update the aspect ratios of the adjacent plots # set their anchors so they correctly align with the main plot axd['right'].set_aspect(width_scale, anchor='SW') axd['bottom'].set_aspect(1/height_scale, anchor='NE') plt.show()
The above is the detailed content of Images share both x- and y-axes. For more information, please follow other related articles on the PHP Chinese website!