Home > Backend Development > Python Tutorial > Beautiful Soup parse list of many entries and save in dataframe

Beautiful Soup parse list of many entries and save in dataframe

WBOY
Release: 2024-02-10 08:48:03
forward
833 people have browsed it

Beautiful Soup parse list of many entries and save in dataframe

Question content

Currently I will be collecting data from dioceses around the world.

My method works with bs4 and pandas. I'm currently working on scraping logic.

import requests
from bs4 import BeautifulSoup
import pandas as pd

url = "http://www.catholic-hierarchy.org/"

# Send a GET request to the website
response = requests.get(url)

#my approach  to parse the HTML content of the page
soup = BeautifulSoup(response.text, 'html.parser')

# Find the relevant elements containing diocese information
diocese_elements = soup.find_all("div", class_="diocesan")

# Initialize empty lists to store data
dioceses = []
addresses = []

# Extract now data from each diocese element
for diocese_element in diocese_elements:
    # Example: Extracting diocese name
    diocese_name = diocese_element.find("a").text.strip()
    dioceses.append(diocese_name)

    # Example: Extracting address
    address = diocese_element.find("div", class_="address").text.strip()
    addresses.append(address)

#  to save the whole data we create a DataFrame using pandas
data = {'Diocese': dioceses, 'Address': addresses}
df = pd.DataFrame(data)

# Display the DataFrame
print(df)
Copy after login

Currently I discovered something strange on my pycharm. I'm trying to find a way to collect all the data using pandas methods.


Correct Answer


This example will get you started - it will parse all parish pages to get the parish name url and store it into a dataframe in panda.

You can then iterate over these urls and get more information you need.

import pandas as pd
import requests
from bs4 import beautifulsoup

chars = "abcdefghijklmnopqrstuvwxyz"
url = "http://www.catholic-hierarchy.org/diocese/la{char}.html"

all_data = []
for char in chars:
    u = url.format(char=char)

    while true:
        print(f"parsing {u}")
        soup = beautifulsoup(requests.get(u).content, "html.parser")
        for a in soup.select("li a[href^=d]"):
            all_data.append(
                {
                    "name": a.text,
                    "url": "http://www.catholic-hierarchy.org/diocese/" + a["href"],
                }
            )

        next_page = soup.select_one('a:has(img[alt="[next page]"])')
        if not next_page:
            break

        u = "http://www.catholic-hierarchy.org/diocese/" + next_page["href"]

df = pd.dataframe(all_data).drop_duplicates()
print(df.head(10))
Copy after login

Print:

...
Parsing http://www.catholic-hierarchy.org/diocese/lax.html
Parsing http://www.catholic-hierarchy.org/diocese/lay.html
Parsing http://www.catholic-hierarchy.org/diocese/laz.html

               Name                                                   URL
0          Holy See  http://www.catholic-hierarchy.org/diocese/droma.html
1   Diocese of Rome  http://www.catholic-hierarchy.org/diocese/droma.html
2            Aachen  http://www.catholic-hierarchy.org/diocese/da549.html
3            Aachen  http://www.catholic-hierarchy.org/diocese/daach.html
4    Aarhus (Århus)  http://www.catholic-hierarchy.org/diocese/da566.html
5               Aba  http://www.catholic-hierarchy.org/diocese/dabaa.html
6        Abaetetuba  http://www.catholic-hierarchy.org/diocese/dabae.html
8         Abakaliki  http://www.catholic-hierarchy.org/diocese/dabak.html
9           Abancay  http://www.catholic-hierarchy.org/diocese/daban.html
10        Abaradira  http://www.catholic-hierarchy.org/diocese/d2a01.html
Copy after login

The above is the detailed content of Beautiful Soup parse list of many entries and save in dataframe. For more information, please follow other related articles on the PHP Chinese website!

source:stackoverflow.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template