I have a pandas data frame df_sample:
columna columnb a aa a ab b ba b bb b bc
I have created a random column containing some date objects:
df_sample['contract_starts'] = np.random.choice(pd.date_range('2024-01-01', '2024-05-01'), len(df_sample))
This results in the following output:
columna columnb contract_starts a aa 2024-01-21 a ab 2024-03-03 b ba 2024-01-18 b bb 2024-02-18 b bc 2024-04-03
How to create another datetime column contract_noted that also has a given range of values (e.g. until 2024-05-01) but does not exceed contract_starts
column, for example:
columnA columnB contract_starts contract_noted A AA 2024-01-21 2024-01-20 A AB 2024-03-03 2024-01-01 B BA 2024-01-18 2024-01-13 B BB 2024-02-18 2024-02-01 B BC 2024-04-03 2024-03-28
You can subtract a random time increment from the contract_starts column by
numpy.random. randint andto_timedelta
:< /a>
df_sample['contract_noted'] = (df_sample['contract_starts'] -
pd.to_timedelta(np.random.randint(1,30, len(df_sample)),
unit='d'))
print (df_sample)
columna columnb contract_starts contract_noted
0 a aa 2024-04-18 2024-03-21
1 a ab 2024-02-12 2024-01-22
2 b ba 2024-02-21 2024-02-02
3 b bb 2024-04-12 2024-03-29
4 b bc 2024-02-10 2024-02-03
contract_starts generate inetegers between
1 and the difference from the start date and time:
days =(df_sample['contract_starts'] - pd.Timestamp('2024-01-01')).dt.days print (days) df_sample['contract_noted'] = (df_sample['contract_starts'] - pd.to_timedelta(np.random.randint(1,days, len(df_sample)), unit='d')) print (df_sample) columnA columnB contract_starts contract_noted 0 A AA 2024-02-09 2024-01-09 1 A AB 2024-04-26 2024-02-23 2 B BA 2024-04-10 2024-04-06 3 B BB 2024-01-31 2024-01-07 4 B BC 2024-01-14 2024-01-08
The above is the detailed content of Create random datetime column conditional on another datetime column pandas. For more information, please follow other related articles on the PHP Chinese website!