Table of Contents
Correct answer
Home Backend Development Python Tutorial Time optimal control example GEKKO

Time optimal control example GEKKO

Feb 10, 2024 pm 08:54 PM

时间最优控制示例 GEKKO

Question content

I am trying to implement a time optimal control problem in gekko. In particular, I copied this short code snippet. Also reported here for practicality:

from gekko import GEKKO
import matplotlib.pyplot as plt
import numpy as np
 
# set up the gekko model
m = GEKKO()
 
# set up the time (minimize the time with time scaling)
m.time = np.linspace(0, 1, 100)
 
# set up the variables
POSITION = m.Var(value=0, ub=330, lb=0)
VELOCITY = m.Var(value=0, ub=33, lb=0)
m.fix_final(VELOCITY, 0)
m.fix_final(POSITION, 300)
 
# set up the value we modify over the horizon
tf = m.FV(value=500, lb=0.1)
tf.STATUS = 1
 
# set up the MV
u = m.MV(integer=True, lb=-2, ub=1)
u.STATUS = 1
 
# set up the equations
m.Equation(POSITION.dt() / tf == VELOCITY)
m.Equation(VELOCITY.dt() / tf == u)
 
# set the objective
m.Obj(tf)
 
# set up the options
m.options.IMODE = 6     # optimal control
m.options.SOLVER = 3    # IPOPT
 
# solve
m.solve(disp=False)
 
# print the time
print("Total time taken: " + str(tf.NEWVAL))
 
# plot the results
plt.figure()
plt.subplot(211)
plt.plot(np.linspace(0,1,100)*tf.NEWVAL, POSITION, label='Position')
plt.plot(np.linspace(0,1,100)*tf.NEWVAL, VELOCITY, label='Velocity')
plt.ylabel('Z')
plt.legend()
plt.subplot(212)
plt.plot(np.linspace(0,1,100)*tf.NEWVAL, u, label=r'$u$')
plt.ylabel('u')
plt.xlabel('Time')
plt.legend()
plt.show()
Copy after login

As is, it works fine, but when I want to remove the constraint on the final value of velocity.

If I comment out the m.fix_final(velocity, 0) line, the result does not change. Regardless, it seems to assume that the final velocity should be zero. Also, if I change the final velocity from zero to any other number, I get the error from gekko: exception: @error: solution not found.

The solution should be easy to find, especially if no constraints are imposed on the final speed, the optimal control would be to keep accelerating() throughout the time.

Any help would be greatly appreciated! :)


Correct answer


Change the final constraints from m.fix_final(velocity, 0) and m.fix_final(position, 300) changed to:

p = np.zeros(100); p[-1] = 1
last = m.Param(p)
m.Equation(last*(POSITION-300)>=0)
Copy after login

This applies an inequality constraint at the last node so that position>=300, but it could also be an equality constraint. We also sometimes use soft constraints, such as m.minimize(last*(position-300)**2) if an infeasible solution prevents the solver from achieving the final condition. Instead, it tries to get the solution as close as possible to the final constraints. When the final value is fixed using m.fix_final(), the derivative is also fixed to zero because that variable is no longer evaluated. This is a known limitation of gekko, as described here.

The above is the detailed content of Time optimal control example GEKKO. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Mathematical Modules in Python: Statistics Mathematical Modules in Python: Statistics Mar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to Create Command-Line Interfaces (CLIs) with Python? How to Create Command-Line Interfaces (CLIs) with Python? Mar 10, 2025 pm 06:48 PM

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

Explain the purpose of virtual environments in Python. Explain the purpose of virtual environments in Python. Mar 19, 2025 pm 02:27 PM

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.

See all articles