Table of Contents
Correct answer
Home Backend Development Python Tutorial Why fine-tuning an MLP model on a small dataset still maintains the same test accuracy as pre-trained weights?

Why fine-tuning an MLP model on a small dataset still maintains the same test accuracy as pre-trained weights?

Feb 10, 2024 pm 09:36 PM

为什么在小数据集上微调 MLP 模型,仍然保持与预训练权重相同的测试精度?

Question content

I designed a simple mlp model to train on 6k data samples.

class mlp(nn.module):
    def __init__(self,input_dim=92, hidden_dim = 150, num_classes=2):
        super().__init__()
        self.input_dim = input_dim
        self.num_classes = num_classes
        self.hidden_dim = hidden_dim
        #self.softmax = nn.softmax(dim=1)

        self.layers = nn.sequential(
            nn.linear(self.input_dim, self.hidden_dim),
            nn.relu(),
            nn.linear(self.hidden_dim, self.hidden_dim),
            nn.relu(),
            nn.linear(self.hidden_dim, self.hidden_dim),
            nn.relu(),
            nn.linear(self.hidden_dim, self.num_classes),

        )

    def forward(self, x):
        x = self.layers(x)
        return x
Copy after login

And the model has been instantiated

model = mlp(input_dim=input_dim, hidden_dim=hidden_dim, num_classes=num_classes).to(device)

optimizer = optimizer.adam(model.parameters(), lr=learning_rate, weight_decay=1e-4)
criterion = nn.crossentropyloss()
Copy after login

and hyperparameters:

num_epoch = 300   # 200e3//len(train_loader)
learning_rate = 1e-3
batch_size = 64
device = torch.device("cuda")
seed = 42
torch.manual_seed(42)
Copy after login

My implementation mainly follows this question. I saved the model as pretrained weights model_weights.pth.

The accuracy of

model on the test data set is 96.80%.

Then, I have another 50 samples (in finetune_loader) on which I am trying to fine-tune the model:

model_finetune = MLP()
model_finetune.load_state_dict(torch.load('model_weights.pth'))
model_finetune.to(device)
model_finetune.train()
# train the network
for t in tqdm(range(num_epoch)):
  for i, data in enumerate(finetune_loader, 0):
    #def closure():
      # Get and prepare inputs
      inputs, targets = data
      inputs, targets = inputs.float(), targets.long()
      inputs, targets = inputs.to(device), targets.to(device)
      
      # Zero the gradients
      optimizer.zero_grad()
      # Perform forward pass
      outputs = model_finetune(inputs)
      # Compute loss
      loss = criterion(outputs, targets)
      # Perform backward pass
      loss.backward()
      #return loss
      optimizer.step()     # a

model_finetune.eval()
with torch.no_grad():
    outputs2 = model_finetune(test_data)
    #predicted_labels = outputs.squeeze().tolist()

    _, preds = torch.max(outputs2, 1)
    prediction_test = np.array(preds.cpu())
    accuracy_test_finetune = accuracy_score(y_test, prediction_test)
    accuracy_test_finetune
    
    Output: 0.9680851063829787
Copy after login

I checked, the accuracy remains the same as before fine-tuning the model to 50 samples, and the output probabilities are also the same.

What could be the reason? Did I make some mistakes in fine-tuning the code?


Correct answer


You must reinitialize the optimizer with a new model (model_finetune object). Currently, as I can see in your code, it seems to still use the optimizer that is initialized with the old model weights - model.parameters().

The above is the detailed content of Why fine-tuning an MLP model on a small dataset still maintains the same test accuracy as pre-trained weights?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Download Files in Python How to Download Files in Python Mar 01, 2025 am 10:03 AM

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How to Work With PDF Documents Using Python How to Work With PDF Documents Using Python Mar 02, 2025 am 09:54 AM

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

How to Cache Using Redis in Django Applications How to Cache Using Redis in Django Applications Mar 02, 2025 am 10:10 AM

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Introducing the Natural Language Toolkit (NLTK) Introducing the Natural Language Toolkit (NLTK) Mar 01, 2025 am 10:05 AM

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

See all articles