Table of Contents
Kernel timer" >Kernel timer
Timer definition/initialization" >Timer definition/initialization
Timer Add/Remove" >Timer Add/Remove
Timing time modification" >Timing time modification
Delay" >Delay
Short delay" >Short delay
Long delay" >Long delay
Home System Tutorial LINUX Linux device driver timing and delay: a convenient method to implement time-related functions

Linux device driver timing and delay: a convenient method to implement time-related functions

Feb 13, 2024 pm 02:45 PM
linux linux tutorial linux system linux command shell script embeddedlinux Getting started with linux linux learning

Have you ever wondered how to write drivers for your devices in Linux? Have you ever thought about how to enable your driver to implement some time-related functions in a Linux system, such as timing, delay, timeout, etc.? If you are interested in these issues, then this article will introduce you to an effective method to achieve these goals-Linux device driver timing and delay.

Linux device driver timing and delay: a convenient method to implement time-related functions

Linux generates timer interrupts at regular intervals (measured by HZ) through the system hardware timer. Each interrupt causes the value jiffies of a kernel counter to accumulate, so this jiffies records the time elapsed since the system started, and then the kernel Based on this, software timers and delays are implemented.

Demo for jiffies and HZ

    #include 

    unsigned long j, stamp_1, stamp_half, stamp_n;

    j = jiffies; /* read the current value */
    stamp_1 = j + HZ; /* 1 second in the future */
    stamp_half = j + HZ/2; /* half a second */
    stamp_n = j + n * HZ / 1000; /* n milliseconds */
Copy after login

Kernel timer

The hardware clock interrupt handler will raise the TIMER_SOFTIRQ soft interrupt and run all core timers that have expired on the current processor.

Timer definition/initialization

In the Linux kernel, an instance of the timer_list structure corresponds to a timer:

    /* 当expires指定的定时器到期时间期满后,将执行function(data) */
    struct timer_list {
        unsigned long expires;           /*定时器到期时间*/
        void (*function)(unsigned long); /* 定时器处理函数 */
        unsigned long data;              /* function的参数 */
        ...
    };

    /* 定义 */
    struct timer_list my_timer;

    /* 初始化函数 */
    void init_timer(struct timer_list * timer);
    /* 初始化宏 */
    TIMER_INITIALIZER(_function, _expires, _data)

    /* 定义并初始化宏 */
    DEFINE_TIMER(_name, _function, _expires, _data)
Copy after login

Timer Add/Remove

    /* 注册内核定时器,将定时器加入到内核动态定时器链表中 */
    void add_timer(struct timer_list * timer);

    /* del_timer_sync()是 del_timer()的同步版,在删除一个定时器时需等待其被处理完,
       因此该函数的调用不能发生在中断上下文 */
    void del_timer(struct timer_list * timer);
    void del_timer_sync(struct timer_list * timer);
Copy after login

Timing time modification

    int mod_timer(struct timer_list *timer, unsigned long expires);
Copy after login

Delay

Short delay

    void ndelay(unsigned long nsecs);
    void udelay(unsigned long usecs);
    void mdelay(unsigned long msecs);
Copy after login

When the kernel starts, it will run a delay test program (delay loop calibration) to calculate lpj (loops per jiffy). These functions are implemented based on lpj, which is busy waiting.

Long delay

  • A very intuitive way is to compare the current jiffies with the target jiffies:

    int time_after(unsigned long a, unsigned long b);    /* a after b, true */
    int time_before(unsigned long a, unsigned long b);   /* a before b */
    int time_after_eq(unsigned long a, unsigned long b); /* a after or equal b */
    int time_before_eq(unsigned long a, unsigned long b);/* a before or equal b */
    
    Copy after login
  • Asleep delay

    void msleep(unsigned int millisecs);
    unsigned long msleep_interruptible(unsigned int millisecs);
    void ssleep(unsigned int seconds);
    
    Copy after login

    Tip: msleep() and ssleep() cannot be interrupted.

  • Through this article, we learned about the application and role of timing and delay in Linux device drivers, and learned how to use various timers and delay functions. We found that timing and delay are a very suitable method for the development of embedded systems, which allows us to easily implement time-related functions. Of course, timing and delay also have some precautions and limitations, such as accuracy issues and performance impacts. Therefore, when using timing and delay, we need to have certain hardware knowledge and experience, as well as good programming habits and debugging skills. I hope this article can provide you with a simple and useful guide, giving you a preliminary understanding of timing and delay.

    The above is the detailed content of Linux device driver timing and delay: a convenient method to implement time-related functions. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What computer configuration is required for vscode What computer configuration is required for vscode Apr 15, 2025 pm 09:48 PM

VS Code system requirements: Operating system: Windows 10 and above, macOS 10.12 and above, Linux distribution processor: minimum 1.6 GHz, recommended 2.0 GHz and above memory: minimum 512 MB, recommended 4 GB and above storage space: minimum 250 MB, recommended 1 GB and above other requirements: stable network connection, Xorg/Wayland (Linux)

vscode cannot install extension vscode cannot install extension Apr 15, 2025 pm 07:18 PM

The reasons for the installation of VS Code extensions may be: network instability, insufficient permissions, system compatibility issues, VS Code version is too old, antivirus software or firewall interference. By checking network connections, permissions, log files, updating VS Code, disabling security software, and restarting VS Code or computers, you can gradually troubleshoot and resolve issues.

How to run java code in notepad How to run java code in notepad Apr 16, 2025 pm 07:39 PM

Although Notepad cannot run Java code directly, it can be achieved by using other tools: using the command line compiler (javac) to generate a bytecode file (filename.class). Use the Java interpreter (java) to interpret bytecode, execute the code, and output the result.

What is vscode What is vscode for? What is vscode What is vscode for? Apr 15, 2025 pm 06:45 PM

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages ​​and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Can vscode be used for mac Can vscode be used for mac Apr 15, 2025 pm 07:36 PM

VS Code is available on Mac. It has powerful extensions, Git integration, terminal and debugger, and also offers a wealth of setup options. However, for particularly large projects or highly professional development, VS Code may have performance or functional limitations.

How to check the warehouse address of git How to check the warehouse address of git Apr 17, 2025 pm 01:54 PM

To view the Git repository address, perform the following steps: 1. Open the command line and navigate to the repository directory; 2. Run the "git remote -v" command; 3. View the repository name in the output and its corresponding address.

How to use VSCode How to use VSCode Apr 15, 2025 pm 11:21 PM

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages ​​and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version

Linux Architecture: Unveiling the 5 Basic Components Linux Architecture: Unveiling the 5 Basic Components Apr 20, 2025 am 12:04 AM

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

See all articles