


Methods and techniques for Linux process exit: How to end the process gracefully
Process exit is a common operation in Linux systems. It allows a process to end its own operation, release the resources it occupies, and return to its own state. There are many reasons for a process to exit, such as completing tasks normally, encountering errors, receiving signals, etc. There are many ways to exit a process, such as using exit(), return, _exit(), abort() and other functions or statements. But, do you really know how to exit a Linux process? Do you know how to use and choose the appropriate process exit method under Linux? Do you know how to end a process gracefully in Linux? This article will introduce you to the relevant knowledge of Linux process exit in detail, so that you can better use and understand this common operation under Linux.
Process exit
The exit of a process under Linux is divided into two types: normal exit and abnormal exit:
1.Exit normally
a. Execute return in the main() function.
b. Call the exit() function
c. Call the _exit() function
2.Exit abnormally
a. Call about function
b. The process receives a signal, and the signal causes the program to terminate.
No matter which exit method is used, the system will eventually execute the same code in the kernel. This code is used to close the open file descriptor used by the process and release the memory and other resources it occupies.
Comparison of several exit methods
1. The difference between exit and return:
exit is a function with parameters. After exit is executed, control is handed over to the system
return is the return after the function is executed. After renturn is executed, control is handed over to the calling function.
2. The difference between exit and abort:
exit is the normal termination of the process
about is abnormal termination.
exit() and _exit() functions
The exit and _exit functions are both used to terminate the process. When the program executes exit or _exit, the system unconditionally stops all remaining operations, clears various data structures, and terminates the running of the process.
exit is declared in the header file stdlib.h, and _exit() is declared in the header file unistd.h. The parameter exit_code in exit is 0, which means that the process terminates normally. If it is other values, it means that an error occurs during program execution.
The difference between exit() and _exit()
_exit() returns to the kernel immediately after execution, while exit() must first perform some clearing operations and then transfer control to the kernel.
When the _exit function is called, it will close all file descriptors of the process, clean up the memory and other kernel cleaning functions, but will not refresh the stream (stdin, stdout, stderr...). The exit function is between the _exit function A wrapper on _exit that calls _exit and flushes the stream before calling it.
The biggest difference between the exit() function and the _exit() function is that the exit() function checks the open status of the file and writes the contents of the file buffer back to the file before calling the exit system. Because there is an operation called "buffered I/O" in the Linux standard function library, its characteristic is that there is a buffer in the memory corresponding to each open file. Each time a file is read, several records will be read continuously, so that the next time the file is read, it can be read directly from the memory buffer; similarly, every time a file is written, it is only written to the memory buffer. When certain conditions are met (such as reaching a certain number or encountering specific characters, etc.), the contents in the buffer are written to the file at once. This technology greatly increases the speed of file reading and writing, but it also brings a little trouble to programming. For example, there is some data that is thought to have been written to the file. In fact, because it does not meet specific conditions, it is only saved in the buffer. At this time, use the _exit() function to directly close the process, and the data in the buffer will be lost. . Therefore, if you want to ensure the integrity of the data, you must use the exit() function.
Let’s look at the difference between them through a function example:
Function example 1: exit.c
#include #include int main() { printf("using exit----\n"); printf("This is the content in buffer\n"); exit(0); }
The execution result is:
using exit---- This is the content in buffer
Function example 2: _exit.c
#include #include int main() { printf("using _exit--\n"); printf("This is the content in buffer"); _exit(0); }
The execution result is:
using _exit--
The printf function uses buffered I/O. This function automatically reads the record from the buffer when encountering the "\n" newline character. Therefore, exit() exits after writing the data in the buffer, while the _exit() function exits directly.
You can also change printf("This is the content in buffer"); in function instance 2 to printf("This is the content in buffer\n") (that is, add a \n at the end of printf to see What is the running result and why does it produce such a result?)
The different order of termination of parent and child processes will produce different results
1. The parent process terminates before the child process:
This situation is the orphan process we used earlier. When the parent process exits first, the system will let the init process take over the child process.
2. The child process terminates before the parent process, but the parent process does not call the wait function
In this case, the child process enters a zombie state and will remain so until the system is restarted. When the child process is in a zombie state, the kernel only saves some necessary information about the process for the parent process. At this time, the child process always occupies resources, and it also reduces the maximum number of processes that the system can create.
What is the zombie state?
A process that has terminated but whose parent process has not yet dealt with it (obtaining information about the terminated child process and releasing the resources it still occupies) is called a zombie process (zombie).
3. The child process terminates before the parent process, and the parent process calls the wait function
At this time the parent process will wait for the child process to end.
Through this article, you should have a comprehensive understanding of Linux process exit methods, and know their definitions, principles, usage, advantages and disadvantages. You should also understand the causes and effects of process exit, and how to correctly use and select process exit methods under Linux. We recommend that when using a Linux system, you use appropriate process exit methods to end the process to improve system stability and efficiency. At the same time, we also remind you to pay attention to some potential problems and challenges when using the process exit method, such as zombie processes, memory leaks, signal handling, etc. I hope this article can help you use the Linux system better and allow you to end the process gracefully under Linux.
The above is the detailed content of Methods and techniques for Linux process exit: How to end the process gracefully. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Using python in Linux terminal...

Configure the apscheduler timing task as a service on macOS platform, if you want to configure the apscheduler timing task as a service, similar to ngin...

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

To open a web.xml file, you can use the following methods: Use a text editor (such as Notepad or TextEdit) to edit commands using an integrated development environment (such as Eclipse or NetBeans) (Windows: notepad web.xml; Mac/Linux: open -a TextEdit web.xml)

Regarding the problem of removing the Python interpreter that comes with Linux systems, many Linux distributions will preinstall the Python interpreter when installed, and it does not use the package manager...

Linux is best used as server management, embedded systems and desktop environments. 1) In server management, Linux is used to host websites, databases, and applications, providing stability and reliability. 2) In embedded systems, Linux is widely used in smart home and automotive electronic systems because of its flexibility and stability. 3) In the desktop environment, Linux provides rich applications and efficient performance.

DebianLinux is known for its stability and security and is widely used in server, development and desktop environments. While there is currently a lack of official instructions on direct compatibility with Debian and Hadoop, this article will guide you on how to deploy Hadoop on your Debian system. Debian system requirements: Before starting Hadoop configuration, please make sure that your Debian system meets the minimum operating requirements of Hadoop, which includes installing the necessary Java Runtime Environment (JRE) and Hadoop packages. Hadoop deployment steps: Download and unzip Hadoop: Download the Hadoop version you need from the official ApacheHadoop website and solve it

"DebianStrings" is not a standard term, and its specific meaning is still unclear. This article cannot directly comment on its browser compatibility. However, if "DebianStrings" refers to a web application running on a Debian system, its browser compatibility depends on the technical architecture of the application itself. Most modern web applications are committed to cross-browser compatibility. This relies on following web standards and using well-compatible front-end technologies (such as HTML, CSS, JavaScript) and back-end technologies (such as PHP, Python, Node.js, etc.). To ensure that the application is compatible with multiple browsers, developers often need to conduct cross-browser testing and use responsiveness
