Home Java javaTutorial Strategies and techniques to improve the efficiency of Java quick sort function

Strategies and techniques to improve the efficiency of Java quick sort function

Feb 18, 2024 pm 11:25 PM
java optimization Quick sort

Strategies and techniques to improve the efficiency of Java quick sort function

Methods and techniques for optimizing Java quick sort function

Quicksort (Quicksort) is a common sorting algorithm. The idea is to divide the array into smaller ones. and the two larger sub-arrays to achieve sorting, and then sort the sub-arrays again to achieve overall ordering. In practical applications, we need to optimize the performance of the quick sort function to improve the efficiency of sorting. The following will introduce some methods and techniques for optimizing the quick sort function, and give specific code examples.

  1. Random selection of reference elements
    The selection of reference elements in quick sort has an important impact on the efficiency of sorting. The traditional approach is to select the first or last element as the base element. However, if the array is already sorted or approximately sorted, this selection method may cause the time complexity of quicksort to degenerate to O(n^2). In order to avoid this situation, we can randomly select an element as the reference element, which can break the order of the input data to a certain extent and improve performance.

The following is a code example for randomly selecting reference elements:

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int pivotIndex = randomPartition(arr, low, high);
            quickSort(arr, low, pivotIndex - 1);
            quickSort(arr, pivotIndex + 1, high);
        }
    }

    public static int randomPartition(int[] arr, int low, int high) {
        int randomIndex = ThreadLocalRandom.current().nextInt(low, high + 1);
        swap(arr, randomIndex, high);
        return partition(arr, low, high);
    }

    public static int partition(int[] arr, int low, int high) {
        int pivot = arr[high];
        int i = low - 1;
        for (int j = low; j < high; j++) {
            if (arr[j] < pivot) {
                i++;
                swap(arr, i, j);
            }
        }
        swap(arr, i + 1, high);
        return i + 1;
    }

    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int[] arr = {5, 9, 1, 3, 7, 6};
        quickSort(arr, 0, arr.length - 1);

        System.out.println(Arrays.toString(arr));
    }
}
Copy after login
  1. Three sampling partition
    In the traditional quick sort algorithm, a single reference element is used to divide the array. However, when there are a large number of duplicate elements in the array, such a division will cause the time complexity of quick sort to degrade to O(n^2). In order to solve this problem, we can use the Median-Of-Three Partitioning method to be more flexible in the selection of reference elements.

The basic idea of ​​three-sampling division is to select three elements in the array (such as the first, last and middle elements), and then use their median as the reference element. By using such a partitioning method, we can try to avoid the performance degradation problem of quick sort when dealing with a large number of repeated elements.

The following is a code example using three-sampling partitioning:

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int[] pivotIndices = medianOfThree(arr, low, high);
            int left = pivotIndices[0];
            int right = pivotIndices[1];
            quickSort(arr, low, left - 1);
            quickSort(arr, left + 1, right - 1);
            quickSort(arr, right + 1, high);
        }
    }

    public static int[] medianOfThree(int[] arr, int low, int high) {
        int mid = (low + high) / 2;
        if (arr[high] < arr[low]) {
            swap(arr, low, high);
        }
        if (arr[mid] < arr[low]) {
            swap(arr, low, mid);
        }
        if (arr[high] < arr[mid]) {
            swap(arr, mid, high);
        }
        swap(arr, mid, high - 1);
        return partition(arr, low + 1, high - 1);
    }

    public static int[] partition(int[] arr, int low, int high) {
        int left = low;
        int right = high;
        int pivot = arr[high];
        int i = low - 1;
        while (true) {
            while (arr[++i] < pivot) {
            }
            while (left < right && pivot < arr[--right]) {
            }
            if (left >= right) {
                break;
            }
            swap(arr, left, right);
        }
        swap(arr, left, high);
        return new int[]{left, right};
    }

    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int[] arr = {5, 9, 1, 3, 7, 6};
        quickSort(arr, 0, arr.length - 1);
        System.out.println(Arrays.toString(arr));
    }
}
Copy after login

By randomly selecting the basis elements and using the three-sampling partitioning method, we can optimize the performance of the Java quick sort function. These methods can improve the efficiency of sorting algorithms when dealing with different data distributions and avoid the degradation of time complexity.

The above is the detailed content of Strategies and techniques to improve the efficiency of Java quick sort function. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Square Root in Java Square Root in Java Aug 30, 2024 pm 04:26 PM

Guide to Square Root in Java. Here we discuss how Square Root works in Java with example and its code implementation respectively.

Perfect Number in Java Perfect Number in Java Aug 30, 2024 pm 04:28 PM

Guide to Perfect Number in Java. Here we discuss the Definition, How to check Perfect number in Java?, examples with code implementation.

Random Number Generator in Java Random Number Generator in Java Aug 30, 2024 pm 04:27 PM

Guide to Random Number Generator in Java. Here we discuss Functions in Java with examples and two different Generators with ther examples.

Armstrong Number in Java Armstrong Number in Java Aug 30, 2024 pm 04:26 PM

Guide to the Armstrong Number in Java. Here we discuss an introduction to Armstrong's number in java along with some of the code.

Weka in Java Weka in Java Aug 30, 2024 pm 04:28 PM

Guide to Weka in Java. Here we discuss the Introduction, how to use weka java, the type of platform, and advantages with examples.

Smith Number in Java Smith Number in Java Aug 30, 2024 pm 04:28 PM

Guide to Smith Number in Java. Here we discuss the Definition, How to check smith number in Java? example with code implementation.

Java Spring Interview Questions Java Spring Interview Questions Aug 30, 2024 pm 04:29 PM

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Break or return from Java 8 stream forEach? Break or return from Java 8 stream forEach? Feb 07, 2025 pm 12:09 PM

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

See all articles