Home Backend Development Python Tutorial Locks and synchronization in Python concurrent programming: keeping your code safe and reliable

Locks and synchronization in Python concurrent programming: keeping your code safe and reliable

Feb 19, 2024 pm 02:30 PM
python Multithreading multi-Progress Synchronize Concurrent programming Lock Synchronization mechanism

Python 并发编程中的锁与同步:保持你的代码安全可靠

Locks and synchronization in concurrent programming

In concurrent programming , multiple processes or threads run simultaneously, which can lead to resource contention and inconsistency issues. In order to solve these problems, locks and synchronization mechanisms need to be used to coordinate access to shared resources.

The concept of lock

A lock is a mechanism that allows only one thread or process to access a shared resource at a time. When one thread or process acquires a lock, other threads or processes are blocked from accessing the resource until the lock is released.

Type of lock

There are several types of locks in

python:

  • Mutex (Mutex): Ensures that only one thread or process can access the resource at a time.
  • Condition variable: Allows a thread or process to wait for a certain condition and then acquire the lock.
  • Read-write lock: Allows multiple threads to read resources at the same time, but only allows one thread to write resources.

Synchronization mechanism

In addition to using locks, the synchronization mechanism also includes other methods to ensure coordination between threads or processes:

  • Semaphore: Used to limit the number of threads or processes that can access shared resources at the same time.
  • Event: Used to notify a thread or process that an event has occurred.
  • Barrier: Used to ensure that all threads or processes complete a specific task before continuing.

Locks and synchronization in Python

In order to implement locking and synchronization in Python, the following modules can be used:

  • Threading: used for multi-threadingprogramming
  • Multiprocessing: used for multi-process programming
  • Concurrent.futures: Provides advanced Concurrency tools

Sample code

Use mutex locks to protect shared resources

import threading

# 创建一个互斥锁
lock = threading.Lock()

# 要保护的共享资源
shared_resource = 0

def increment_shared_resource():
global shared_resource

# 获取锁
lock.acquire()

# 临界区:对共享资源进行操作
shared_resource += 1

# 释放锁
lock.release()
Copy after login

Use condition variables to wait for specific conditions

import threading
from threading import Condition

# 创建一个条件变量
cv = Condition()

# 要等待的条件
condition_met = False

def wait_for_condition():
global condition_met

# 获取锁
cv.acquire()

# 等待条件满足
while not condition_met:
cv.wait()

# 释放锁
cv.release()
Copy after login

Use semaphores to limit access to resources

import multiprocessing

# 创建一个信号量
semaphore = multiprocessing.Semaphore(3)

# 要访问的共享资源
shared_resource = []

def access_shared_resource():
# 获取信号量许可证
semaphore.acquire()

# 临界区:对共享资源进行操作
shared_resource.append(threading.current_thread().name)

# 释放信号量许可证
semaphore.release()
Copy after login

in conclusion

In concurrent programming, the use of locks and synchronization mechanisms is crucial. They help coordinate access to shared resources and prevent race conditions and data inconsistencies. By understanding the different lock types and synchronization mechanisms, and how to implement them in Python, you can write safereliable concurrent code.

The above is the detailed content of Locks and synchronization in Python concurrent programming: keeping your code safe and reliable. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP and Python: Code Examples and Comparison PHP and Python: Code Examples and Comparison Apr 15, 2025 am 12:07 AM

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

How to train PyTorch model on CentOS How to train PyTorch model on CentOS Apr 14, 2025 pm 03:03 PM

Efficient training of PyTorch models on CentOS systems requires steps, and this article will provide detailed guides. 1. Environment preparation: Python and dependency installation: CentOS system usually preinstalls Python, but the version may be older. It is recommended to use yum or dnf to install Python 3 and upgrade pip: sudoyumupdatepython3 (or sudodnfupdatepython3), pip3install--upgradepip. CUDA and cuDNN (GPU acceleration): If you use NVIDIAGPU, you need to install CUDATool

How is the GPU support for PyTorch on CentOS How is the GPU support for PyTorch on CentOS Apr 14, 2025 pm 06:48 PM

Enable PyTorch GPU acceleration on CentOS system requires the installation of CUDA, cuDNN and GPU versions of PyTorch. The following steps will guide you through the process: CUDA and cuDNN installation determine CUDA version compatibility: Use the nvidia-smi command to view the CUDA version supported by your NVIDIA graphics card. For example, your MX450 graphics card may support CUDA11.1 or higher. Download and install CUDAToolkit: Visit the official website of NVIDIACUDAToolkit and download and install the corresponding version according to the highest CUDA version supported by your graphics card. Install cuDNN library:

Python vs. JavaScript: Community, Libraries, and Resources Python vs. JavaScript: Community, Libraries, and Resources Apr 15, 2025 am 12:16 AM

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

How to choose the PyTorch version under CentOS How to choose the PyTorch version under CentOS Apr 14, 2025 pm 02:51 PM

When selecting a PyTorch version under CentOS, the following key factors need to be considered: 1. CUDA version compatibility GPU support: If you have NVIDIA GPU and want to utilize GPU acceleration, you need to choose PyTorch that supports the corresponding CUDA version. You can view the CUDA version supported by running the nvidia-smi command. CPU version: If you don't have a GPU or don't want to use a GPU, you can choose a CPU version of PyTorch. 2. Python version PyTorch

How to install nginx in centos How to install nginx in centos Apr 14, 2025 pm 08:06 PM

CentOS Installing Nginx requires following the following steps: Installing dependencies such as development tools, pcre-devel, and openssl-devel. Download the Nginx source code package, unzip it and compile and install it, and specify the installation path as /usr/local/nginx. Create Nginx users and user groups and set permissions. Modify the configuration file nginx.conf, and configure the listening port and domain name/IP address. Start the Nginx service. Common errors need to be paid attention to, such as dependency issues, port conflicts, and configuration file errors. Performance optimization needs to be adjusted according to the specific situation, such as turning on cache and adjusting the number of worker processes.

How to operate distributed training of PyTorch on CentOS How to operate distributed training of PyTorch on CentOS Apr 14, 2025 pm 06:36 PM

PyTorch distributed training on CentOS system requires the following steps: PyTorch installation: The premise is that Python and pip are installed in CentOS system. Depending on your CUDA version, get the appropriate installation command from the PyTorch official website. For CPU-only training, you can use the following command: pipinstalltorchtorchvisiontorchaudio If you need GPU support, make sure that the corresponding version of CUDA and cuDNN are installed and use the corresponding PyTorch version for installation. Distributed environment configuration: Distributed training usually requires multiple machines or single-machine multiple GPUs. Place

See all articles