Data analytics has become an integral part of modern business, helping companies extract valuable insights from data and make informed decisions. Python is a powerful programming language with an extensive data analysis library, making it one of the preferred tools for data analysis.
data processing
import pandas as pd # 加载 CSV 文件 df = pd.read_csv("data.csv") # 清洗和准备数据 df = df.dropna()# 删除缺失值 df["column"] = df["column"].astype("cateGory")# 转换数据类型 # 合并数据集 df2 = pd.read_csv("data2.csv") df = pd.merge(df, df2, on="id")
import numpy as np # 创建一个 NumPy 数组 arr = np.array([1, 2, 3, 4, 5]) # 数组操作 arr_mean = np.mean(arr)# 计算平均值 arr_sum = np.sum(arr)# 计算总和
data visualization
import matplotlib.pyplot as plt # 创建一个散点图 plt.scatter(df["x"], df["y"]) plt.xlabel("x") plt.ylabel("y") plt.show()
import seaborn as sns # 创建一个热力图 sns.heatmap(df.corr())# 计算相关矩阵并绘制热力图 plt.show()
Data Mining and Machine Learning
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression # 划分训练和测试集 X_train, X_test, y_train, y_test = train_test_split(df[["x", "y"]], df["z"]) # 训练线性回归模型 model = LinearRegression() model.fit(X_train, y_train) # 评估模型 score = model.score(X_test, y_test)# 计算准确率
import Tensorflow as tf # 创建一个神经网络模型 model = tf.keras.Sequential([ tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dense(1, activation="sigmoid") ]) # 训练模型 model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]) model.fit(X_train, y_train, epochs=10) # 评估模型 loss, accuracy = model.evaluate(X_test, y_test)
Advantages of Python data analysis
in conclusion
Python is ideal for data analysis, with its rich library and ease of use, it enables businesses to explore data efficiently and comprehensively. By leveraging Python's data analysis tools, organizations can gain insights behind their data, make informed decisions, and improve business outcomes.The above is the detailed content of Python data analysis: Insight into the patterns behind your data. For more information, please follow other related articles on the PHP Chinese website!