


The wonderful collision of Python and computer vision: from image understanding to the infinite possibilities of artificial intelligence
Image processing and analysis
python Rich image processing libraries and tools make it powerful in image processing and analysis. Libraries like Scikit-image, OpenCV, and Pillow provide various image processing and analysis functions, such as image reading and writing, image format conversion, image enhancement, image segmentation, feature extraction, etc. These libraries enable Python to easily handle various image formats and extract valuable information from images.
Demo code:
import numpy as np import cv2 # 读取图像 image = cv2.imread("image.jpg") # 图像灰度化 gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 图像边缘检测 edges = cv2.Canny(gray_image, 100, 200) # 显示图像 cv2.imshow("Original Image", image) cv2.imshow("Gray Image", gray_image) cv2.imshow("Edges", edges) cv2.waiTKEy(0) cv2.destroyAllwindows()
Machine Learning and Deep Learning
Python also has strong support in the fields of machine learning and deep learning. Libraries like Scikit-learn, PyTorch and Tensorflow provide a variety of machine learning and deep learningalgorithms that make it easy to build in Python Various machine learning and deep learning models. These models can be used for tasks such as image classification, target detection, semantic segmentation, and image generation.
Demo code:
import numpy as np import tensorflow as tf # 加载数据 (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() # 归一化数据 x_train = x_train / 255.0 x_test = x_test / 255.0 # 构建模型 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation="relu"), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation="softmax") ]) # 编译模型 model.compile(optimizer="adam", loss="sparse_cateGorical_crossentropy", metrics=["accuracy"]) # 训练模型 model.fit(x_train, y_train, epochs=10) # 评估模型 model.evaluate(x_test, y_test)
Image understanding
Python also plays an important role in image understanding. Libraries like OpenCV, PyTorch, and TensorFlow provide various image understanding algorithms, making it easy to build various image understanding models in Python. These models can be used for tasks such as target detection, semantic segmentation, gesture recognition, and face recognition.
AI
Python has also been widely used in the field of artificial intelligence. Libraries like Scikit-learn, PyTorch, and TensorFlow provide various artificial intelligence algorithms, making it easy to build various artificial intelligence models in Python. These models can be used for natural language processing, machinetranslation, speech recognition, robot control and other tasks.
The above is the detailed content of The wonderful collision of Python and computer vision: from image understanding to the infinite possibilities of artificial intelligence. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Yes, VS Code can run Python code. To run Python efficiently in VS Code, complete the following steps: Install the Python interpreter and configure environment variables. Install the Python extension in VS Code. Run Python code in VS Code's terminal via the command line. Use VS Code's debugging capabilities and code formatting to improve development efficiency. Adopt good programming habits and use performance analysis tools to optimize code performance.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.
