MySQL学习足迹记录04--数据过滤--WHERE_MySQL
bitsCN.com
MySQL学习足迹记录04--数据过滤--WHERE
1.使用WHERE子句
eg: mysql> SELECT prod_name,prod_price FROM products WHERE prod_price=2.50;+---------------+------------+| prod_name | prod_price |+---------------+------------+| Carrots | 2.50 || TNT (1 stick) | 2.50 |+---------------+------------+
TIPs:
*在同时使用ORDER BY和WHERE子句时,ORDER BY位于WHERE之后,否则出错。
2.WHERE子句的操作符
等于:=
不等于:<>或!=
小于:<
小于等于:<=
大于:>
大于等于:>=
在指定的两个值之间 BETWEEN
3.检测单个值
eg: mysql> SELECT prod_name,prod_price FROM products WHERE prod_name='fuses';+-----------------+---------------+ #和字符串比较需用单引号限定| prod_name | prod_price |+-----------------+---------------+| Fuses | 3.42 |+-----------------+----------------+
4.小于限定
eg: mysql> SELECT prod_name,prod_price FROM products WHERE prod_price<10;+---------------+------------+| prod_name | prod_price |+---------------+------------+| .5 ton anvil | 5.99 || 1 ton anvil | 9.99 || Carrots | 2.50 || Fuses | 3.42 || Oil can | 8.99 || Sling | 4.49 || TNT (1 stick) | 2.50 |+---------------+------------+7 rows in set (0.00 sec)
5.小于等于限定
eg: mysql> SELECT prod_name,prod_price FROM products WHERE prod_price<=10;+----------------+------------+| prod_name | prod_price |+----------------+------------+| .5 ton anvil | 5.99 || 1 ton anvil | 9.99 || Bird seed | 10.00 || Carrots | 2.50 || Fuses | 3.42 || Oil can | 8.99 || Sling | 4.49 || TNT (1 stick) | 2.50 || TNT (5 sticks) | 10.00 |+----------------+------------+9 rows in set (0.00 sec)
6.不匹配检查
eg: mysql> SELECT vend_id,prod_name FROM products WHERE vend_id <>1003; #等效于SELECT vend_id,prod_name FROM products # WHERE vend_id != 1003;+---------+--------------+ | vend_id | prod_name |+---------+--------------+| 1001 | .5 ton anvil || 1001 | 1 ton anvil || 1001 | 2 ton anvil || 1002 | Fuses || 1005 | JetPack 1000 || 1005 | JetPack 2000 || 1002 | Oil can |+---------+--------------+7 rows in set (0.00 sec)
7.范围值检查(BETWEEN)
eg: mysql> SELECT prod_name,prod_price FROM products WHERE prod_price BETWEEN 5.99 AND 10.00;+----------------+------------+ #注意,BETWEEN两边的取值为闭区间| prod_name | prod_price |+----------------+------------+| .5 ton anvil | 5.99 || 1 ton anvil | 9.99 || Bird seed | 10.00 || Oil can | 8.99 || TNT (5 sticks) | 10.00 |+----------------+------------+5 rows in set (0.00 sec)
8.空值检查(IS NULL)
*NULL:无值(no value),并不等于0,空字符串或仅仅包含空
eg: 先列出包含空值的表:customers; mysql> SELECT * FROM customers;+---------+----------------+---------------------+-----------+------------+----------+--------------+--------------+---------------------+| cust_id | cust_name | cust_address | cust_city | cust_state | cust_zip | cust_country | cust_contact | cust_email |+---------+----------------+---------------------+-----------+------------+----------+--------------+--------------+---------------------+| 10001 | Coyote Inc. | 200 Maple Lane | Detroit | MI | 44444 | USA | Y Lee | ylee@coyote.com || 10002 | Mouse House | 333 Fromage Lane | Columbus | OH | 43333 | USA | Jerry Mouse |NULL || 10003 | Wascals | 1 Sunny Place | Muncie | IN | 42222 | USA | Jim Jones | rabbit@wascally.com || 10004 | Yosemite Place | 829 Riverside Drive | Phoenix | AZ | 88888 | USA | Y Sam | sam@yosemite.com || 10005 | E Fudd | 4545 53rd Street | Chicago | IL | 54545 | USA | E Fudd |NULL |+---------+----------------+---------------------+-----------+------------+----------+--------------+--------------+---------------------+5 rows in set (0.00 sec)mysql> SELECT cust_id FROM customers WHERE cust_email IS NULL;+---------+| cust_id |+---------+| 10002 || 10005 |+---------+2 rows in set (0.00 sec)
bitsCN.com

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.
