数据量增加导致mysql执行计划改变解决_MySQL
bitsCN.com
数据量增加导致mysql执行计划改变解决
收到运维同学电话,mysql服务器连接数满了,登录服务器查看,确实满了,好吧,首先增加连接数到2500,暂时提供对外服务。连接继续升高,又快达到2500。发现有大量的查询时间将近到了1200秒,大量的长连接堆积,导致连接数攀升,看来还是sql的问题。在这些长连接中,发现这样的sql
SELECT product_id,gift_id,gift_original_price,gift_count, FROM promo_xxx WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1;mysql> explain SELECT product_id,gift_id,gift_original_price,gift_count FROM promo_gift WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1;+----+-------------+-----------------+------+---------------+------+---------+------+--------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+-----------------+------+---------------+------+---------+------+--------+-------------+| 1 | SIMPLE | promo_gift_list | ALL | id_promo_gift | NULL | NULL | NULL | 249188 | Using where | +----+-------------+-----------------+------+---------------+------+---------+------+--------+-------------+1 row in set (0.04 sec)mysql> show index from promo_gift;+-----------------+------------+-----------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |+-----------------+------------+-----------------+--------------+-----------------+-----------+-------------+----------+--------+------+------------+---------+---------------+| promo_gift_list | 0 | PRIMARY | 1 | id | A | 261184 | NULL | NULL | | BTREE | | | | promo_gift_list | 0 | id_promo_gift | 1 | promotion_id | A | 1140 | NULL | NULL | YES | BTREE | | | | promo_gift_list | 0 | id_promo_gift | 4 | product_id | A | 261184 | NULL | NULL | YES | BTREE | | |
狗血的sql,竟然走全表扫描,但是promotion_id有索引啊,为什么没有走索引呢?而且以前建立的索引,走的好好的,今天怎么就出现问题了,这是一个问题
那我们可以通过last_query_cost 查看sql消耗
mysql>SELECT product_id,gift_id,gift_original_price,gift_count FROM promo_gift WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1; mysql>show status like 'last_query_cost';+-----------------+--------------+| Variable_name | Value |+-----------------+--------------+| Last_query_cost | 52626.599000 | +-----------------+--------------+1 row in set (0.00 sec)
不走索引,那我们强制使用索引
mysql> explain SELECT product_id,gift_id,gift_original_price,gift_count FROM promo_gift force index(id_promo_gift) WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1; +----+-------------+-----------------+-------+---------------+---------------+---------+------+--------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+-----------------+-------+---------------+---------------+---------+------+--------+-------------+| 1 | SIMPLE | promo_gift_list | range | id_promo_gift | id_promo_gift | 5 | NULL | 124594 | Using where | +----+-------------+-----------------+-------+---------------+---------------+---------+------+--------+-------------+1 row in set (0.02 sec)
嗯,加上索引了,那么sql消耗怎么样呢?
mysql> SELECT product_id,gift_id,gift_original_price,gift_count FROM promo_gift force index(id_promo_gift) WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1; +------------+----------+---------------------+------------+| product_id | gift_id | gift_original_price | gift_count |+------------+----------+---------------------+------------+| 22569455 | 23230046 | 147.00 | 1 | +------------+----------+---------------------+------------+1 row in set (0.40 sec)mysql> show status like 'last_query_cost';+-----------------+---------------+| Variable_name | Value |+-----------------+---------------+| Last_query_cost | 174432.609000 | +-----------------+---------------+1 row in set (0.00 sec)
我们发现如果使用这个索引,sql消耗174432.609000>52626.599000,mysql优化器认为使用这个id_promo_gift索引,sql消耗是非常大的,这就是mysql执行不使用这个索引的原因。
后来开发人员说,昨天晚上这个表增加了11万多的数据,嗯,数据量增加,mysql执行计划改变。那好吧,单独product_id列再加一个索引。
mysql> alter table promo_gift_list add index product_id(product_id);Query OK, 0 rows affected (6.45 sec)Records: 0 Duplicates: 0 Warnings: 0mysql> explain SELECT product_id,gift_id,gift_original_price,gift_count FROM promo_gift_list WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1 AND IFNULL(is_delete,0)!=1;+----+-------------+-----------------+------+--------------------------+------------+---------+-------+------+-------------+| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |+----+-------------+-----------------+------+--------------------------+------------+---------+-------+------+-------------+| 1 | SIMPLE | promo_gift_list | ref | id_promo_gift,product_id | product_id | 5 | const | 2 | Using where |+----+-------------+-----------------+------+--------------------------+------------+---------+-------+------+-------------+1 row in set (0.00 sec)
使用了刚才新加的索引 product_id
mysql> SELECT product_id,gift_id,gift_original_price,gift_count FROM promo_gift_list WHERE promotion_id IN (589994,589994) AND product_id IN (22569455) AND is_valid=1 AND IFNULL(is_delete,0)!=1; +------------+----------+---------------------+------------+| product_id | gift_id | gift_original_price | gift_count |+------------+----------+---------------------+------------+| 22569455 | 23230046 | 147.00 | 1 | +------------+----------+---------------------+------------+1 row in set (0.00 sec)mysql> show status like 'last_query_cost';+-----------------+----------+| Variable_name | Value |+-----------------+----------+| Last_query_cost | 2.399000 | +-----------------+----------+1 row in set (0.01 sec)
sql消耗降到了2.399000,ok,问题解决。连接数很快从1000多降到100以内。
数据量的增加导致了mysql执行计划的改变,那么mysql的cost是怎么计算的呢?
cost=io_cost+cpu_cost
cpu_cost位于mysql上层,处理返回的记录所花开销,io_cost存储引擎层,读取也没的IO开销。最直接的方式last_query_cost记录sql的cost。查看last_query_cost可以初步判断sql的cost,明白mysql优化器执行的依据。
bitsCN.com

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.

According to news from this website on July 23, ASUS has launched a variety of server and workstation-level products powered by AMD EPYC 4004 series processors. Note from this site: AMD launched the AM5 platform and Zen4 architecture EPYC 4004 series processors in May, offering up to 16-core 3DV-Cache specifications. ASUSProER100AB6 server ASUSProER100AB6 is a 1U rack server product equipped with EPYC Xiaolong 4004 series processor, suitable for the needs of IDC and small and medium-sized enterprises. ASUSExpertCenterProET500AB6 workstation ASUSExpertCenterProET500AB6 is a
