Home Technology peripherals AI Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Feb 21, 2024 pm 03:31 PM
robot reinforcement learning industry robot technology serl

Now, robots can learn precise factory control tasks.
Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans#In recent years, significant progress has been made in the field of robotic reinforcement learning technology, such as quadruped walking, grasping, dexterity Control, etc., but most of them are limited to the laboratory demonstration stage. Widely applying robot reinforcement learning technology to actual production environments still faces many challenges, which to a certain extent limits its application scope in real scenarios. In the process of practical application of reinforcement learning technology, it is necessary to overcome multiple complex problems including reward mechanism setting, environment reset, sample efficiency improvement, and action safety guarantee. Industry experts emphasize that solving the many problems in the actual implementation of reinforcement learning technology is as important as the continuous innovation of the algorithm itself.

Faced with this challenge, scholars from the University of California, Berkeley, Stanford University, the University of Washington, and Google jointly developed a tool called the Efficient Robot Reinforcement Learning Suite (SERL). An open source software framework dedicated to promoting the widespread use of reinforcement learning technology in practical robotic applications.

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

  • Project homepage: https://serl-robot.github.io/
  • Open source code: https://github.com/rail-berkeley /serl
  • ##Thesis title: SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning

The SERL framework mainly includes the following components:

1. Efficient reinforcement learning

In the field of reinforcement learning, intelligence An agent (such as a robot) learns how to perform tasks by interacting with its environment. It learns a set of strategies designed to maximize cumulative rewards by trying various behaviors and obtaining reward signals based on the behavioral results. SERL uses the RLPD algorithm to empower robots to learn from real-time interactions and previously collected offline data at the same time, greatly shortening the training time required for robots to master new skills.

2. Various reward stipulation methods

SERL provides a variety of reward stipulation methods, allowing developers to Tailor reward structures to the needs of specific tasks. For example, fixed-position installation tasks can have rewards tailored to the robot's position, and more complex tasks can use classifiers or VICE to learn an accurate reward mechanism. This flexibility helps to precisely guide the robot to learn the most effective strategy for a specific task.

3. No reproduction function

Traditional robot learning algorithms need to reset the environment regularly, proceed as follows A round of interactive learning. In many tasks this cannot be done automatically. The no-reinforcement learning capabilities provided by SERL train both forward-backward policies simultaneously, providing environment resets for each other.

4. Robot control interface

SERL provides a series of Gym environment interfaces for Franka manipulator tasks as standard examples , users can easily extend SERL to different robotic arms.

5. Impedance controller

In order to ensure that the robot can safely and accurately explore and For operation, SERL provides a special impedance controller for the Franka robotic arm to ensure accuracy while ensuring that excessive torque is not generated after contact with external objects.

Through the combination of these technologies and methods, SERL greatly shortens the training time while maintaining a high success rate and robustness, enabling the robot to learn in a short time complex tasks and apply them effectively in the real world.

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humansFigures 1 and 2: Comparison of success rate and number of beats between SERL and behavioral cloning methods in various tasks. With a similar amount of data, the success rate of SERL is several times higher (up to 10 times) than that of clones, and the beat rate is at least twice as fast.

Application Case

1. PCB component assembly:

Assembling perforated components on PCB boards is a common but challenging robotic task. The pins of electronic components are very easy to bend, and the tolerance between the hole position and the pin is very small, which requires the robot to be both precise and gentle during assembly. With just 21 minutes of autonomous learning, SERL enabled the robot to achieve a 100% task completion rate. Even in the face of unknown interference such as the position of the circuit board moving or the line of sight being partially blocked, the robot can stably complete the assembly work.

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

3, 4, 5: When performing the mission of the circuit board component, the robot can deal with various interferences that have not been encountered during the training stage and complete the task smoothly.

2. Cable routing:

In the assembly process of many mechanical and electronic equipment , we need to install cables accurately along a specific path, a task that places high demands on precision and adaptability. Since flexible cables are prone to deformation during the wiring process, and the wiring process may be subject to various disturbances, such as accidental movement of the cable or changes in the position of the holder, this makes it difficult to deal with using traditional non-learning methods. SERL is able to achieve a 100% success rate in as little as 30 minutes. Even when the gripper position is different from what it was during training, the robot is able to generalize its learned skills and adapt to new wiring challenges, ensuring correct execution of the wiring job.

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

#                                                                                                                                     Special training can also directly pass the cable through the clip in a different position than during training.

3. Object grabbing and placing operations:

In warehouse management or retail In the industry, robots often need to move items from one place to another, which requires the robot to be able to identify and carry specific items. During the training process of reinforcement learning, it is difficult to automatically reset under-actuated objects. Leveraging SERL's reset-free reinforcement learning capabilities, the robot simultaneously learned two policies with a 100/100 success rate in 1 hour and 45 minutes. Use the forward strategy to put the objects from box A to box B, and then use the backward strategy to put the objects from box B back to box A.

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans

Figures 9, 10, 11: SERL trained two sets of strategies, one to carry objects from the right to the left, and one to move objects from the left back to the right. The robot not only achieves a 100% success rate on training objects, but can also intelligently handle objects it has never seen before.

##Main author
1. Jianlan Luo

Jianlan Luo is currently a postdoctoral scholar in the Department of Electrical and Computer Science at the University of California, Berkeley, where he collaborates with Professor Sergey Levine at the Berkeley Artificial Intelligence Center (BAIR). His main research interests lie in machine learning, robotics, and optimal control. Before returning to academia, he was a full-time researcher at Google X, working with Professor Stefan Schaal. Prior to that, he obtained a master's degree in computer science and a Ph.D. in mechanical engineering from the University of California, Berkeley; during this time he worked with Professor Alice Agogino and Professor Pieter Abbeel. He has also served as a visiting research scholar at Deepmind's London headquarters.

2. Zheyuan Hu

He graduated from the University of California, Berkeley with a bachelor's degree in computer science and applied mathematics majors. Currently, he conducts research in the RAIL laboratory led by Professor Sergey Levine. He has a strong interest in the field of robotic learning, focusing on developing methods that enable robots to quickly and widely acquire dexterous manipulation skills in the real world.

3. Charles Xu

He is an electrical engineer at the University of California, Berkeley Fourth-year undergraduate students majoring in Engineering and Computer Science. Currently, he conducts research in the RAIL laboratory led by Professor Sergey Levine. His research interests lie at the intersection of robotics and machine learning, aiming to build autonomous control systems that are highly robust and capable of generalization.

4. You Liang Tan

He is a researcher engineer at Berkeley RAIL Laboratory , supervised by Professor Sergey Levine. He previously received his bachelor's degree from Nanyang Technological University, Singapore and completed his master's degree from Georgia Institute of Technology, USA. Prior to that, he was a member of the Open Robotics Foundation. His work focuses on real-world applications of machine learning and robotics software technologies.

5. Stefan Schaal

##He was born in 1991 in Munich Technik The university earns PhDs in mechanical engineering and artificial intelligence. He is a postdoctoral researcher in the Department of Brain and Cognitive Sciences and the Artificial Intelligence Laboratory at MIT, an invited researcher at the ATR Human Information Processing Research Laboratory in Japan, and an adjunct assistant professor in the Department of Kinesiology at Georgia Institute of Technology and Pennsylvania State University in the United States. . He also served as leader of the computational learning group during the Japanese ERATO project, the Jawa Kinetic Brain Project (ERATO/JST). In 1997, he became a professor of computer science, neuroscience, and biomedical engineering at USC and was promoted to tenured professor. His research interests include topics such as statistics and machine learning, neural networks and artificial intelligence, computational neuroscience, functional brain imaging, nonlinear dynamics, nonlinear control theory, robotics, and biomimetic robots.

He was one of the founding directors of the Max Planck Institute for Intelligent Systems in Germany, where he led the Autonomous Motion Department for many years. He is currently chief scientist at Intrinsic, Alphabet's [Google] new robotics subsidiary. Stefan Schaal is an IEEE Fellow.

6. Chelsea Finn

She is a computer science and electrical engineering major at Stanford University assistant professor. Her lab, IRIS, research explores intelligence through large-scale robot interaction and is part of SAIL and the ML Group. She is also a member of the Google Brain team. She is interested in the ability of robots and other intelligent agents to develop a wide range of intelligent behaviors through learning and interaction. She previously completed a PhD in computer science from the University of California, Berkeley, and a bachelor's degree in electrical engineering and computer science from the Massachusetts Institute of Technology.

7. Abhishek Gupta

He is Paul G. Allen of the University of Washington Assistant Professor in the School of Computer Science and Engineering, leading the WEIRD Laboratory. Previously, he was a postdoctoral scholar at MIT, working with Russ Tedrake and Pulkit Agarwal. He completed his PhD on machine learning and robotics at BAIR, UC Berkeley, under the supervision of Professors Sergey Levine and Pieter Abbeel. Prior to that, he also completed his bachelor's degree at the University of California, Berkeley. His main research goal is to develop algorithms that enable robotic systems to learn to perform complex tasks in a variety of unstructured environments, such as offices and homes.

8. Sergey Levine

He is an electrical engineering and computer science professor at the University of California, Berkeley Associate Professor in the Department of Science. His research focuses on algorithms that enable autonomous agents to learn complex behaviors, particularly general methods that enable any autonomous system to learn to solve any task. Applications for these methods include robotics, as well as a range of other areas where autonomous decision-making is required.

The above is the detailed content of Learn to assemble a circuit board in 20 minutes! The open source SERL framework has a 100% precision control success rate and is three times faster than humans. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners Aug 09, 2024 pm 04:01 PM

But maybe he can’t defeat the old man in the park? The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis. Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis. Paper address: https://arxiv.org/pdf/2408.03906 How good is the DeepMind robot at playing table tennis? Probably on par with human amateur players: both forehand and backhand: the opponent uses a variety of playing styles, and the robot can also withstand: receiving serves with different spins: However, the intensity of the game does not seem to be as intense as the old man in the park. For robots, table tennis

The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home Aug 21, 2024 pm 07:33 PM

On August 21, the 2024 World Robot Conference was grandly held in Beijing. SenseTime's home robot brand "Yuanluobot SenseRobot" has unveiled its entire family of products, and recently released the Yuanluobot AI chess-playing robot - Chess Professional Edition (hereinafter referred to as "Yuanluobot SenseRobot"), becoming the world's first A chess robot for the home. As the third chess-playing robot product of Yuanluobo, the new Guoxiang robot has undergone a large number of special technical upgrades and innovations in AI and engineering machinery. For the first time, it has realized the ability to pick up three-dimensional chess pieces through mechanical claws on a home robot, and perform human-machine Functions such as chess playing, everyone playing chess, notation review, etc.

Claude has become lazy too! Netizen: Learn to give yourself a holiday Claude has become lazy too! Netizen: Learn to give yourself a holiday Sep 02, 2024 pm 01:56 PM

The start of school is about to begin, and it’s not just the students who are about to start the new semester who should take care of themselves, but also the large AI models. Some time ago, Reddit was filled with netizens complaining that Claude was getting lazy. "Its level has dropped a lot, it often pauses, and even the output becomes very short. In the first week of release, it could translate a full 4-page document at once, but now it can't even output half a page!" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ in a post titled "Totally disappointed with Claude", full of

At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded Aug 22, 2024 pm 10:35 PM

At the World Robot Conference being held in Beijing, the display of humanoid robots has become the absolute focus of the scene. At the Stardust Intelligent booth, the AI ​​robot assistant S1 performed three major performances of dulcimer, martial arts, and calligraphy in one exhibition area, capable of both literary and martial arts. , attracted a large number of professional audiences and media. The elegant playing on the elastic strings allows the S1 to demonstrate fine operation and absolute control with speed, strength and precision. CCTV News conducted a special report on the imitation learning and intelligent control behind "Calligraphy". Company founder Lai Jie explained that behind the silky movements, the hardware side pursues the best force control and the most human-like body indicators (speed, load) etc.), but on the AI ​​side, the real movement data of people is collected, allowing the robot to become stronger when it encounters a strong situation and learn to evolve quickly. And agile

ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

At this ACL conference, contributors have gained a lot. The six-day ACL2024 is being held in Bangkok, Thailand. ACL is the top international conference in the field of computational linguistics and natural language processing. It is organized by the International Association for Computational Linguistics and is held annually. ACL has always ranked first in academic influence in the field of NLP, and it is also a CCF-A recommended conference. This year's ACL conference is the 62nd and has received more than 400 cutting-edge works in the field of NLP. Yesterday afternoon, the conference announced the best paper and other awards. This time, there are 7 Best Paper Awards (two unpublished), 1 Best Theme Paper Award, and 35 Outstanding Paper Awards. The conference also awarded 3 Resource Paper Awards (ResourceAward) and Social Impact Award (

Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Aug 08, 2024 am 07:02 AM

This afternoon, Hongmeng Zhixing officially welcomed new brands and new cars. On August 6, Huawei held the Hongmeng Smart Xingxing S9 and Huawei full-scenario new product launch conference, bringing the panoramic smart flagship sedan Xiangjie S9, the new M7Pro and Huawei novaFlip, MatePad Pro 12.2 inches, the new MatePad Air, Huawei Bisheng With many new all-scenario smart products including the laser printer X1 series, FreeBuds6i, WATCHFIT3 and smart screen S5Pro, from smart travel, smart office to smart wear, Huawei continues to build a full-scenario smart ecosystem to bring consumers a smart experience of the Internet of Everything. Hongmeng Zhixing: In-depth empowerment to promote the upgrading of the smart car industry Huawei joins hands with Chinese automotive industry partners to provide

Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Sep 03, 2024 pm 05:18 PM

Deep integration of vision and robot learning. When two robot hands work together smoothly to fold clothes, pour tea, and pack shoes, coupled with the 1X humanoid robot NEO that has been making headlines recently, you may have a feeling: we seem to be entering the age of robots. In fact, these silky movements are the product of advanced robotic technology + exquisite frame design + multi-modal large models. We know that useful robots often require complex and exquisite interactions with the environment, and the environment can be represented as constraints in the spatial and temporal domains. For example, if you want a robot to pour tea, the robot first needs to grasp the handle of the teapot and keep it upright without spilling the tea, then move it smoothly until the mouth of the pot is aligned with the mouth of the cup, and then tilt the teapot at a certain angle. . this

Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Aug 22, 2024 pm 08:02 PM

Conference Introduction With the rapid development of science and technology, artificial intelligence has become an important force in promoting social progress. In this era, we are fortunate to witness and participate in the innovation and application of Distributed Artificial Intelligence (DAI). Distributed artificial intelligence is an important branch of the field of artificial intelligence, which has attracted more and more attention in recent years. Agents based on large language models (LLM) have suddenly emerged. By combining the powerful language understanding and generation capabilities of large models, they have shown great potential in natural language interaction, knowledge reasoning, task planning, etc. AIAgent is taking over the big language model and has become a hot topic in the current AI circle. Au

See all articles