I have a pandas dataframe as shown below, which details additional calls to a region:
commsdate | area | day0 incremental | day1 incremental | day2 incremental |
---|---|---|---|---|
01/01/24 | sales | 43 | 36 | 29 |
01/01/24 | service | 85 | 74 | 66 |
02/01/24 | sales | 56 | 42 | 31 |
02/01/24 | service | 73 | 62 | 49 |
03/01/24 | sales | 48 | 32 | twenty four |
03/01/24 | service | 67 | 58 | 46 |
I am trying to calculate the number of calls received by date, so a sales call received on January 1st will be day0_incremental (43) of that date and January 2nd will be day0 of January 2 plus 1 Day1 on January 1 (36) 56) and January 3 will be day0 on January 3 plus day1 on January 2 plus day2 on January 1 (48 42 29), resulting in the following data frame:
CallDate | Sales | Service |
---|---|---|
01/01/24 | 43 | 85 |
02/01/24 | 92 | 147 |
03/01/24 | 119 | 195 |
04/01/24 | 63 | 107 |
05/01/24 | twenty four | 46 |
I have successfully created a shell of the data frame for the second table with no values under the range column but don't know what to do next:
df['commsdate'] = pd.to_datetime(df['commsdate'], format='%d/%m/%y') areaunique = df['area'].unique().tolist() from datetime import timedelta calldate = pd.date_range(start=min(df['commsdate']), end=max(df['commsdate'])+timedelta(days=6), freq='d') data = {area: [] for area in areaunique} dfnew = pd.dataframe(data) dfnew['calldate'] = calldate dfnew = dfnew.melt(id_vars=['calldate'], var_name='area') dfnew = dfnew.pivot(index='calldate', columns='area', values='value') dfnew = dfnew.reset_index() dfnew = dfnew[['calldate'] + areaunique]
I've started writing a for loop, but I've only gotten this far:
for i in range(1,len(areaunique)+1): dfnew.columns(i) =
You can dialpivot
,shift
andadd
:
df['commsdate'] = pd.to_datetime(df['commsdate'], dayfirst=true) tmp = df.pivot(index='commsdate', columns='area') out = (tmp['day0 incremental'] .add(tmp['day1 incremental'].shift(freq='1d'), fill_value=0) .add(tmp['day2 incremental'].shift(freq='2d'), fill_value=0) .reset_index().rename_axis(columns=none) )
Alternatively, programmatically use functools.reduce
using numbers extracted from the
dayx … string:
from functools import reduce import re reg = re.compile(r'day(\d+)') df['commsdate'] = pd.to_datetime(df['commsdate'], dayfirst=true) tmp = df.pivot(index='commsdate', columns='area') out = reduce(lambda a,b: a.add(b, fill_value=0), (tmp[d].shift(freq=f'{reg.search(d).group(1)}d') for d in tmp.columns.get_level_values(0).unique()) ).reset_index().rename_axis(columns=none)
Output:
CommsDate Sales Service 0 2024-01-01 43.0 85.0 1 2024-01-02 92.0 147.0 2 2024-01-03 119.0 195.0 3 2024-01-04 63.0 107.0 4 2024-01-05 24.0 46.0
The above is the detailed content of Conditional merge with pandas. For more information, please follow other related articles on the PHP Chinese website!