Home > Backend Development > Python Tutorial > Remove duplicates in DF and convert to JSON obj in python

Remove duplicates in DF and convert to JSON obj in python

王林
Release: 2024-02-22 13:20:03
forward
786 people have browsed it

删除 DF 中的重复项并在 python 中转换为 JSON obj

Question content

I have a df similar to the one below

name         series
=============================
a             a1
b             b1
a             a2
a             a1
b             b2
Copy after login

I need to convert the series into a list which should be assigned to each name like dictionary or json obj like below

{
   "a": ["a1", "a2"],
   "b": ["b1", "b2"]
}
Copy after login

So far I have tried using groupby but it just groups everything into a single dictionary

test = df.groupby("series")[["name"]].apply(lambda x: x)
Copy after login

The above code gives a df-like output

Series
Name
A     0   A1
      2   A2
      3   A1
B     1   B1
      4   B2
Copy after login

Any help is greatly appreciated

Thank you


Correct answer


Firstdrop_duplicates Make sure there is, thengroupby. agg as a list:

out = df.drop_duplicates().groupby('name')['series'].agg(list).to_dict()
Copy after login

Or dial unique:

out = df.groupby('name')['series'].agg(lambda x: x.unique().tolist()).to_dict()
Copy after login

Output: {'a': ['a1', 'a2'], 'b': ['b1', 'b2']}

If you have additional columns, make sure to keep only the columns of interest:

out = (df[['name', 'series']].drop_duplicates()
       .groupby('name')['series'].agg(list).to_dict()
      )
Copy after login

Sort the list:

out = (df.groupby('name')['series']
         .agg(lambda x: sorted(x.unique().tolist())).to_dict()
      )
Copy after login

Example:

# input
  Name Series
0    A     Z1
1    B     B1
2    A     A2
3    A     Z1
4    B     B2

# output
{'A': ['A2', 'Z1'], 'B': ['B1', 'B2']}
Copy after login

The above is the detailed content of Remove duplicates in DF and convert to JSON obj in python. For more information, please follow other related articles on the PHP Chinese website!

source:stackoverflow.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template