


Five forms of JVM garbage collection mechanism: detailed interpretation and comparison
Five forms of JVM garbage collection mechanism: detailed interpretation and comparison
Abstract: JVM garbage collection (Garbage Collection, referred to as GC) is one of the core features of the Java language One, because it effectively frees up memory that is no longer in use while the program is running. This article will explain in detail the five forms of JVM garbage collection mechanism and compare the advantages and disadvantages between them. At the same time, we will also provide specific code examples to help readers better understand these garbage collection mechanisms.
1. Introduction
JVM is the abbreviation of Java Virtual Machine, which is the running environment of Java programs. In a Java program, when an object is created in memory, a corresponding mechanism is needed to reclaim the memory space it occupies. This is the task of garbage collection.
2. Mark-Sweep Algorithm (Mark-Sweep)
The mark-sweep algorithm is one of the earliest and most basic garbage collection algorithms. Its principle is simple: first, starting from the root node, all reachable objects are marked; then, unmarked objects are cleared.
Sample code:
public class MarkSweep { private boolean marked; public void setMarked(boolean marked) { this.marked = marked; } public boolean isMarked() { return marked; } } public class GC { public static void main(String[] args) { MarkSweep object1 = new MarkSweep(); MarkSweep object2 = new MarkSweep(); object1.setMarked(true); System.gc(); // 垃圾回收 if (object1.isMarked()) { System.out.println("object1 is reachable"); } else { System.out.println("object1 is garbage"); } if (object2.isMarked()) { System.out.println("object2 is reachable"); } else { System.out.println("object2 is garbage"); } } }
3. Copying algorithm (Copying)
The copying algorithm uses a different strategy to solve the garbage collection problem. It divides the available memory into two blocks and only uses one block at a time. When a piece of memory is used up, copy the surviving objects to another piece of memory, and then clear all objects in the current memory.
Sample code:
public class Copying { private boolean marked; public void setMarked(boolean marked) { this.marked = marked; } public boolean isMarked() { return marked; } } public class GC { public static void main(String[] args) { Copying object1 = new Copying(); Copying object2 = new Copying(); object1.setMarked(true); System.gc(); // 垃圾回收 if (object1.isMarked()) { System.out.println("object1 is reachable"); } else { System.out.println("object1 is garbage"); } if (object2.isMarked()) { System.out.println("object2 is reachable"); } else { System.out.println("object2 is garbage"); } } }
4. Mark-Compact algorithm (Mark-Compact)
The mark-compression algorithm is a garbage collection algorithm that combines the mark-sweep algorithm and the copy algorithm. . It first marks live objects, then moves them to one end, and then clears other objects.
Sample code:
public class MarkCompact { private boolean marked; public void setMarked(boolean marked) { this.marked = marked; } public boolean isMarked() { return marked; } } public class GC { public static void main(String[] args) { MarkCompact object1 = new MarkCompact(); MarkCompact object2 = new MarkCompact(); object1.setMarked(true); System.gc(); // 垃圾回收 if (object1.isMarked()) { System.out.println("object1 is reachable"); } else { System.out.println("object1 is garbage"); } if (object2.isMarked()) { System.out.println("object2 is reachable"); } else { System.out.println("object2 is garbage"); } } }
5. Generational recycling algorithm (Generational)
The generational recycling algorithm uses a more targeted strategy to allocate memory according to the life cycle of the object. Divided into different generations. Normally, newly created objects are allocated to the new generation, and objects that survive multiple GCs are moved to the old generation.
Sample code:
public class Generational { private boolean marked; public void setMarked(boolean marked) { this.marked = marked; } public boolean isMarked() { return marked; } } public class GC { public static void main(String[] args) { Generational object1 = new Generational(); Generational object2 = new Generational(); object1.setMarked(true); System.gc(); // 垃圾回收 if (object1.isMarked()) { System.out.println("object1 is reachable"); } else { System.out.println("object1 is garbage"); } if (object2.isMarked()) { System.out.println("object2 is reachable"); } else { System.out.println("object2 is garbage"); } } }
6. Evaluation and comparison
- Mark-clearing algorithm is the most basic, but has low efficiency and will produce memory fragmentation.
- The copy algorithm is simple and efficient, but it can only utilize half of the memory space.
- Mark - The compression algorithm combines the advantages of the first two algorithms, but requires moving objects and is slightly less efficient.
- The generational recycling algorithm divides generations according to the life cycle of the object, which can achieve more targeted recycling, but it will increase the complexity of the system.
- Different garbage collection algorithms are suitable for different application scenarios, and it is very important to choose the appropriate algorithm.
Conclusion:
There are five forms of JVM garbage collection mechanism, each with its own advantages and disadvantages. Choosing an appropriate recycling algorithm requires trade-offs based on specific application scenarios and requirements. This article provides detailed explanations and code examples, hoping to help readers better understand and apply these garbage collection mechanisms.
The above is the detailed content of Five forms of JVM garbage collection mechanism: detailed interpretation and comparison. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Memory management in Java involves automatic memory management, using garbage collection and reference counting to allocate, use and reclaim memory. Effective memory management is crucial for security because it prevents buffer overflows, wild pointers, and memory leaks, thereby improving the safety of your program. For example, by properly releasing objects that are no longer needed, you can avoid memory leaks, thereby improving program performance and preventing crashes.

JVM command line parameters allow you to adjust JVM behavior at a fine-grained level. The common parameters include: Set the Java heap size (-Xms, -Xmx) Set the new generation size (-Xmn) Enable the parallel garbage collector (-XX:+UseParallelGC) Reduce the memory usage of the Survivor area (-XX:-ReduceSurvivorSetInMemory) Eliminate redundancy Eliminate garbage collection (-XX:-EliminateRedundantGCs) Print garbage collection information (-XX:+PrintGC) Use the G1 garbage collector (-XX:-UseG1GC) Set the maximum garbage collection pause time (-XX:MaxGCPau

An introduction to the analysis of the functions and principles of the JVM virtual machine: The JVM (JavaVirtualMachine) virtual machine is one of the core components of the Java programming language, and it is one of the biggest selling points of Java. The role of the JVM is to compile Java source code into bytecodes and be responsible for executing these bytecodes. This article will introduce the role of JVM and how it works, and provide some code examples to help readers understand better. Function: The main function of JVM is to solve the problem of portability of Java programs on different platforms.

In C++, reference counting is a memory management technique. When an object is no longer referenced, the reference count will be zero and it can be safely released. Garbage collection is a technique that automatically releases memory that is no longer in use. The garbage collector periodically scans and releases dangling objects. Smart pointers are C++ classes that automatically manage the memory of the object they point to, tracking reference counts and freeing the memory when no longer referenced.

CSS reflow and repaint are very important concepts in web page performance optimization. When developing web pages, understanding how these two concepts work can help us improve the response speed and user experience of the web page. This article will delve into the mechanics of CSS reflow and repaint, and provide specific code examples. 1. What is CSS reflow? When the visibility, size or position of elements in the DOM structure changes, the browser needs to recalculate and apply CSS styles and then re-layout

Python is widely used in various fields and is highly regarded for its ease of use and powerful functions. However, its performance can become a bottleneck in some cases. Through an in-depth understanding of the CPython virtual machine and some clever optimization techniques, the running efficiency of Python programs can be significantly improved. 1. Understand the CPython virtual machine CPython is the most popular implementation of Python, which uses a virtual machine (VM) to execute Python code. The VM interprets the bytecode into machine instructions, which will cause a certain amount of time overhead. Understanding how VMs work helps us identify and optimize performance bottlenecks. 2. Garbage collection Python uses a reference counting mechanism for garbage collection, but it may cause periodic garbage collection pauses

Title: An in-depth exploration of the storage location and mechanism of Golang variables. As the application of Go language (Golang) gradually increases in the fields of cloud computing, big data and artificial intelligence, it is particularly important to have an in-depth understanding of the storage location and mechanism of Golang variables. In this article, we will discuss in detail the memory allocation, storage location and related mechanisms of variables in Golang. Through specific code examples, it helps readers better understand how Golang variables are stored and managed in memory. 1.Memory of Golang variables

Key points and precautions for mastering JVM memory usage JVM (JavaVirtualMachine) is the environment in which Java applications run, and the most important one is the memory management of the JVM. Properly managing JVM memory can not only improve application performance, but also avoid problems such as memory leaks and memory overflows. This article will introduce the key points and considerations of JVM memory usage and provide some specific code examples. JVM memory partitions JVM memory is mainly divided into the following areas: Heap (He
