


Python Machine Learning Guide: From zero basics to master level, your AI dream starts here
Chapter 1: Python Basics
Before starting machine learning, you need to master some python basic knowledge. This chapter covers the basic syntax, data types, control structures and functions of Python. If you are already familiar with Python, you can skip this chapter.
# 注释 # 变量 x = 5 y = "Hello, world!" # 数据类型 print(type(x))# <class "int"> print(type(y))# <class "str"> # 控制结构 if x > 0: print("x is positive.") else: print("x is not positive.") # 函数 def my_function(x): return x * 2 print(my_function(5))# 10
Chapter 2: Basics of Machine Learning
This chapter will introduce the basic knowledge of machine learning, including the definition, classification, and evaluation methods of machine learning. You'll learn what machine learning can do and how to choose the right machine learning algorithm.
# 导入必要的库
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 加载数据
data = pd.read_csv("data.csv")
# 划分训练集和测试集
X = data.drop("target", axis=1)# 特征数据
y = data["target"]# 标签数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 评估模型
score = model.score(X_test, y_test)
print("准确率:", score)
# 预测
predictions = model.predict(X_test)
This chapter will introduce some commonly used machine learning algorithms, including linear regression, logistic regression, decision trees, support vector machines, random forests, etc. You will learn the principles and characteristics of each algorithm, and how to use these algorithms to solve practical problems.
# 导入必要的库 from sklearn.linear_model import LinearRegression from sklearn.linear_model import LoGISticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier # 加载数据 data = pd.read_csv("data.csv") # 划分训练集和测试集 X = data.drop("target", axis=1)# 特征数据 y = data["target"]# 标签数据 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # 训练模型 models = [ LinearRegression(), LogisticRegression(), DecisionTreeClassifier(), SVC(), RandomForestClassifier() ] for model in models: model.fit(X_train, y_train) # 评估模型 score = model.score(X_test, y_test) print(model.__class__.__name__, "准确率:", score)
This chapter will introduce the basic knowledge of
deep learning, including the structure and principles of neural network, commonly used activation functions, loss functions and optimization algorithms, etc. You'll learn what deep learning can do and how to use deep learning to solve real-world problems.
The above is the detailed content of Python Machine Learning Guide: From zero basics to master level, your AI dream starts here. For more information, please follow other related articles on the PHP Chinese website!# 导入必要的库
import Tensorflow as tf
# 定义神经网络模型
model = tf.keras.Sequential([
tf.keras.layers.Dense(100, activation="relu"),
tf.keras.layers.Dense(10, activation="softmax")
])
# 编译模型
model.compile(optimizer="adam", loss="sparse_cateGorical_crossentropy", metrics=["accuracy"])
# 训练模型
model.fit(X_train, y_train, epochs=10)
# 评估模型
score = model.evaluate(X_test, y_test)
print("准确率:", score[1])
# 预测
predictions = model.predict(X_test)

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H
