Home Java javaTutorial Explore: Different development stages of JVM garbage collection mechanism

Explore: Different development stages of JVM garbage collection mechanism

Feb 23, 2024 pm 05:36 PM
Garbage collection mechanism jvm Garbage collector evolution

Explore: Different development stages of JVM garbage collection mechanism

In-depth analysis: The diversified evolution of JVM garbage collection mechanism requires specific code examples

1. Introduction

With the development of computer science, The garbage collection mechanism plays a vital role in the JVM (Java Virtual Machine). The diversified evolution of the JVM garbage collection mechanism is to improve the performance and memory management of Java programs. This article will provide an in-depth analysis of the specific evolution of the JVM garbage collection mechanism and provide specific code examples to help readers better understand.

2. The basic principles of the garbage collection mechanism

Before explaining the diversified evolution of the JVM garbage collection mechanism, we first need to understand its basic principles. The goal of the garbage collection mechanism is to automatically manage dynamically allocated memory by recycling objects that are no longer used and releasing allocated memory to reduce memory leaks and memory fragmentation problems.

The JVM implements automatic memory management by using the Garbage Collector. The garbage collector runs periodically and marks all objects that are no longer referenced and releases them back to the JVM's memory heap (Heap). The working process of the garbage collector includes stages such as marking, cleaning, and compaction. The marking stage is the most important, and its purpose is to determine which objects can be considered garbage.

3. The evolution of the JVM garbage collection mechanism

During the evolution of the JVM, the garbage collection mechanism has also undergone many improvements and optimizations. The following are several important stages of evolution:

  1. Mark and Sweep (Mark and Sweep) algorithm
    The earliest JVM garbage collection mechanism adopted a simple mark-and-sweep algorithm. This algorithm works by walking through all objects in the heap and marking those that are no longer referenced and then clearing them. However, this algorithm has some drawbacks, including fragmentation issues and long pause times.
  2. Copying algorithm
    In order to solve the fragmentation problem in the mark-clear algorithm, the copying algorithm was introduced into the JVM. The copy algorithm divides the heap space into two parts and only uses one part at a time. When garbage collection occurs, it copies live objects to another part and resets the memory during the cleanup process. The advantage of this algorithm is that it can avoid fragmentation problems, but it will waste some memory space.
  3. Mark and Compact algorithm
    In order to overcome the memory waste problem of the copy algorithm, the mark and compact algorithm was introduced into the JVM. This algorithm copies surviving objects to one end of the heap and then compacts them to clear invalid objects and move other objects so that the free space is contiguous. This algorithm can solve the problem of memory fragmentation and is more efficient than the copy algorithm.
  4. Generational algorithm
    The generational algorithm is one of the latest garbage collection mechanisms of the JVM. It divides the heap space into different generations based on the survival time of the objects, such as Young Generation and Old Generation. Objects in the young generation live for a shorter time, while objects in the old generation live for a longer time. Depending on the survival time of the object, the garbage collector can selectively recycle objects of different generations to improve recycling efficiency.

4. Specific code examples

In order to better understand the evolution of the JVM garbage collection mechanism, the following are some specific code examples:

  1. Mark-and-sweep algorithm example:
public class SomeClass {
    private Object obj;

    public SomeClass(Object obj) {
        this.obj = obj;
    }

    public static void main(String[] args) {
        SomeClass obj1 = new SomeClass(new Object());
        SomeClass obj2 = new SomeClass(new Object());
        
        obj1 = null;
        
        // 垃圾回收器将标记obj1对象为垃圾并释放其内存
        // 再次运行垃圾回收器将标记obj2对象为垃圾并释放其内存
    }
}
Copy after login
  1. Copy algorithm example:
public class SomeClass {
    private Object obj;

    public SomeClass(Object obj) {
        this.obj = obj;
    }

    public static void main(String[] args) {
        SomeClass obj1 = new SomeClass(new Object());
        SomeClass obj2 = new SomeClass(new Object());
        
        obj1 = null;
        
        // 垃圾回收器将复制obj2对象到另一部分堆空间
        // obj1对象所占的内存空间将被重置
    }
}
Copy after login
  1. Mark-and-collate algorithm example:
public class SomeClass {
    private Object obj;

    public SomeClass(Object obj) {
        this.obj = obj;
    }

    public static void main(String[] args) {
        SomeClass obj1 = new SomeClass(new Object());
        SomeClass obj2 = new SomeClass(new Object());
        
        obj1 = null;
        
        // 垃圾回收器将标记obj1对象为垃圾并释放其内存
        // obj2对象将被移动到堆的一端并压缩空闲空间
    }
}
Copy after login
  1. Generational algorithm examples:
public class SomeClass {
    private Object obj;

    public SomeClass(Object obj) {
        this.obj = obj;
    }

    public static void main(String[] args) {
        SomeClass obj1 = new SomeClass(new Object());
        SomeClass obj2 = new SomeClass(new Object());
        
        obj1 = null;
        
        // 垃圾回收器根据对象的存活时间,有选择性地对不同代的对象进行回收
    }
}
Copy after login

The above are some simple examples to help readers understand the diverse evolution of the JVM garbage collection mechanism. Of course, the actual garbage collection mechanism is far more complex than these examples, and there may be other optimizations and improvements for different JVM implementations.

Summary

The diversified evolution of the JVM garbage collection mechanism is to improve the performance and memory management of Java programs. During its evolution, the JVM introduced a variety of different garbage collection algorithms, including mark-sweep, copy, mark-compact, and generational. Each algorithm has its advantages and disadvantages, and the appropriate garbage collection mechanism should be selected according to the specific scenario. Understanding the evolution of the JVM garbage collection mechanism will help us write more efficient and robust Java programs.

The above is the detailed content of Explore: Different development stages of JVM garbage collection mechanism. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Why does golang compile quickly? Why does golang compile quickly? Apr 21, 2024 am 01:25 AM

Go has the advantage of fast compilation due to factors such as parallel compilation, incremental compilation, simple syntax, efficient data structures, precompiled headers, garbage collection, and other optimizations.

The role and potential of Golang in desktop application development The role and potential of Golang in desktop application development Apr 08, 2024 pm 03:33 PM

Role of Go in Desktop Application Development: Go is an ideal choice for desktop application development due to its cross-platform nature, concurrency, simplicity and garbage collection mechanism. Potential: Cross-platform tools: Create tools that run on multiple platforms. Efficient applications: Take advantage of concurrency to process data and improve performance. GUI Apps: Easily create modern GUI interfaces. Game Development: Develop low-latency, high-performance games.

Go language helps efficient operation and maintenance: a practical guide Go language helps efficient operation and maintenance: a practical guide Apr 08, 2024 pm 03:51 PM

Go language is widely used in the field of operation and maintenance. This article provides a practical guide showing how to use Go language to solve common operation and maintenance tasks, such as indicator collection and monitoring. Other operational use cases include log aggregation, automated configuration management and troubleshooting. The high concurrency and ease of use of the Go language make it an ideal choice for operation and maintenance engineers. Through the practical cases and use cases introduced in this article, the operation and maintenance team can improve efficiency and simplify key tasks.

How does Java anonymous inner class solve memory leak problem? How does Java anonymous inner class solve memory leak problem? May 01, 2024 pm 10:30 PM

Anonymous inner classes can cause memory leaks. The problem is that they hold a reference to the outer class, preventing the outer class from being garbage collected. Solutions include: 1. Use weak references. When the external class is no longer held by a strong reference, the garbage collector will immediately recycle the weak reference object; 2. Use soft references. The garbage collector will recycle the weak reference object when it needs memory during garbage collection. Only then the soft reference object is recycled. In actual combat, such as in Android applications, the memory leak problem caused by anonymous inner classes can be solved by using weak references, so that the anonymous inner class can be recycled when the listener is not needed.

Golang applicability: comprehensive analysis of its advantages and disadvantages Golang applicability: comprehensive analysis of its advantages and disadvantages Apr 08, 2024 pm 05:09 PM

Golang is suitable for concurrent processing and high-performance scenarios, and is popular for its goroutines, high-performance compilation, and concise syntax. Disadvantages include concurrent garbage collection, generic limitations, and ecosystem maturity. Advantages: High concurrency (goroutine) High performance (static compilation) Simple syntax library Rich disadvantages: Garbage collection generics limit ecosystem maturity

Detailed explanation of JVM command line parameters: the secret weapon to control JVM operation Detailed explanation of JVM command line parameters: the secret weapon to control JVM operation May 09, 2024 pm 01:33 PM

JVM command line parameters allow you to adjust JVM behavior at a fine-grained level. The common parameters include: Set the Java heap size (-Xms, -Xmx) Set the new generation size (-Xmn) Enable the parallel garbage collector (-XX:+UseParallelGC) Reduce the memory usage of the Survivor area (-XX:-ReduceSurvivorSetInMemory) Eliminate redundancy Eliminate garbage collection (-XX:-EliminateRedundantGCs) Print garbage collection information (-XX:+PrintGC) Use the G1 garbage collector (-XX:-UseG1GC) Set the maximum garbage collection pause time (-XX:MaxGCPau

Memory leaks in PHP applications: causes, detection and resolution Memory leaks in PHP applications: causes, detection and resolution May 09, 2024 pm 03:57 PM

A PHP memory leak occurs when an application allocates memory and fails to release it, resulting in a reduction in the server's available memory and performance degradation. Causes include circular references, global variables, static variables, and expansion. Detection methods include Xdebug, Valgrind and PHPUnitMockObjects. The resolution steps are: identify the source of the leak, fix the leak, test and monitor. Practical examples illustrate memory leaks caused by circular references, and specific methods to solve the problem by breaking circular references through destructors.

Golang function performance optimization testing and analysis methods Golang function performance optimization testing and analysis methods Apr 17, 2024 pm 03:15 PM

Optimizing function performance in Go is crucial. Functions can be tested and analyzed using performance analysis tools and benchmarks: Benchmark: Use the Benchmark function to compare the performance of function implementations. Performance analysis: Use tools in the pprof package (such as CPUProfile) to generate performance analysis configuration files. Practical case: Analyze the Add function to find performance bottlenecks, and optimize the function through external loops. Optimization tips: use efficient data structures, reduce allocations, parallelize execution, and disable the garbage collector.

See all articles