Home Technology peripherals AI To make up for the shortcomings of Transformer planning, Tian Yuandong team's Searchformer became popular

To make up for the shortcomings of Transformer planning, Tian Yuandong team's Searchformer became popular

Feb 26, 2024 am 08:01 AM
industry

Transformer’s powerful generalization ability has been proven again!

In recent years, Transformer-based structures have shown excellent performance in various tasks and attracted global attention. Using this structure and combining it with large amounts of data, the resulting models such as large language models (LLM) can be well adapted to practical application scenarios.

Despite their success in some areas, Transformer-based structures and LLMs still face challenges, especially in handling planning and inference tasks. Previous research has shown that LLM has difficulties in dealing with multi-step planning tasks or higher-order reasoning tasks.

In order to improve the reasoning and planning performance of Transformer, the research community has also proposed some methods in recent years. One of the most common and effective methods is to simulate the human thinking process: first generate an intermediate "thought" and then output a response. For example, the Chain of Thought (CoT) prompting method encourages the model to predict intermediate steps and perform step-by-step "thinking." The thinking tree (ToT) uses branching strategies and evaluation methods to allow the model to generate multiple different thinking paths, and then select the best path from them. Although these techniques are often effective, research has shown that in many cases these methods degrade model performance due to reasons including self-enforcing.

Techniques that perform well on one dataset may not perform well on other datasets. This may be due to a change in the type of reasoning required, such as a shift from spatial to mathematical or commonsense reasoning.

In contrast, traditional symbolic planning and search techniques demonstrate excellent reasoning capabilities. Furthermore, the solutions computed by these traditional methods often possess formal guarantees, since symbolic planning algorithms usually follow a well-defined rule-based search process.

In order to equip Transformer with complex reasoning capabilities, Meta FAIR Tian Yuandong team recently proposed Searchformer.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

  • Paper title: Beyond A*: Better Planning with Transformers via Search Dynamics Bootstrapping

  • Paper address : https://arxiv.org/pdf/2402.14083.pdf

Searchformer is a Transformer model, but for multi-step planning tasks such as maze navigation and box pushing, it can calculate The optimal plan can be obtained and the number of search steps used can be far less than that of symbolic planning algorithms such as A* search.

To do this, the team proposed a new method: search dynamics bootstrapping. This method first trains a Transformer model to imitate the search process of A* (as shown in Figure 1), and then fine-tunes it so that it can find the optimal plan with fewer search steps.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

In more detail, the first step is to train a Transformer model that imitates A* search. Here, the team’s approach is to run A* search against randomly generated planning task instances. After executing A* When , the team will record the executed calculations and optimal planning and organize them into word sequences, that is, tokens. In this way, the resulting training data set contains the execution trajectory of A* and encodes information about A* itself. Search dynamic information. Then, train a Transformer model so that it can generate these token sequences along the optimal planning for any planning task.

The second step is to use the expert iteration method to further improve the use of the above Searchformer trained on search-enhanced sequences (containing the execution traces of A*). Expert iteration methods allow the Transformer to generate optimal solutions with fewer search steps. This process results in a neural programming algorithm that is implicitly encoded in Among the network weights of the Transformer, and it has a high probability of finding the optimal plan with fewer search steps than A* search. For example, when performing the box pushing task, the new model can answer 93.7% of the test tasks, The number of simultaneous search steps is 26.8% less than A* search on average.

The team stated: This paves the way for Transformer to surpass the traditional symbolic planning algorithm.

Experiment

In order to better understand the impact of the amount of training data and model parameters on the performance of the resulting model, they conducted some ablation studies.

They used two types of data sets to train the model: one type of token The sequence contains only solution (solution-only, which contains only task description and final plan); the other is search-augmented (which contains task description, search tree dynamics and final plan).

In the experiment, the team used a deterministic and non-deterministic variant of the A* search to generate each sequence data set.

Maze Navigation

In the first experiment, the team trained a set of encoder-decoder Transformer models to predict the optimal path in a 30×30 maze.

Figure 4 shows that by predicting intermediate computational steps, more robust performance can be achieved when the amount of data is small.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

Figure 5 shows the performance of the model trained using only the solutions.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

# Figure 6 shows the impact of task difficulty on the performance of each model.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

Overall, although the model trained using only the solution can predict the optimal plan when the training data set used is large enough and diverse enough, when the data The search-augmented model performs significantly better when the amount of data is small, and also scales better to more difficult tasks.

Sokoban

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

In order to test whether it can be obtained on different and more complex tasks (with different tokenization modes) With similar results, the team also generated a Sokoban planning data set for testing.

Figure 7 shows the probability of each model generating the correct plan for each test task.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

It can be seen that, like the previous experiment, by training with execution traces, the search-enhanced model outperforms the model trained with only solutions.

Searchformer: Improving search dynamics through bootstrapping

As a final experiment, the team investigated how search-enhanced models can be iteratively improved to rely on fewer search steps. Calculate the optimal plan numerically. The goal here is to shorten the length of the search trajectory while still obtaining the optimal solution.

To make up for the shortcomings of Transformer planning, Tian Yuandong teams Searchformer became popular

Figure 8 shows that the newly proposed search dynamic guidance method can iteratively shorten the length of the sequences generated by the Searchformer model.

The above is the detailed content of To make up for the shortcomings of Transformer planning, Tian Yuandong team's Searchformer became popular. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners Aug 09, 2024 pm 04:01 PM

But maybe he can’t defeat the old man in the park? The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis. Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis. Paper address: https://arxiv.org/pdf/2408.03906 How good is the DeepMind robot at playing table tennis? Probably on par with human amateur players: both forehand and backhand: the opponent uses a variety of playing styles, and the robot can also withstand: receiving serves with different spins: However, the intensity of the game does not seem to be as intense as the old man in the park. For robots, table tennis

The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home Aug 21, 2024 pm 07:33 PM

On August 21, the 2024 World Robot Conference was grandly held in Beijing. SenseTime's home robot brand "Yuanluobot SenseRobot" has unveiled its entire family of products, and recently released the Yuanluobot AI chess-playing robot - Chess Professional Edition (hereinafter referred to as "Yuanluobot SenseRobot"), becoming the world's first A chess robot for the home. As the third chess-playing robot product of Yuanluobo, the new Guoxiang robot has undergone a large number of special technical upgrades and innovations in AI and engineering machinery. For the first time, it has realized the ability to pick up three-dimensional chess pieces through mechanical claws on a home robot, and perform human-machine Functions such as chess playing, everyone playing chess, notation review, etc.

Claude has become lazy too! Netizen: Learn to give yourself a holiday Claude has become lazy too! Netizen: Learn to give yourself a holiday Sep 02, 2024 pm 01:56 PM

The start of school is about to begin, and it’s not just the students who are about to start the new semester who should take care of themselves, but also the large AI models. Some time ago, Reddit was filled with netizens complaining that Claude was getting lazy. "Its level has dropped a lot, it often pauses, and even the output becomes very short. In the first week of release, it could translate a full 4-page document at once, but now it can't even output half a page!" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ in a post titled "Totally disappointed with Claude", full of

At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded Aug 22, 2024 pm 10:35 PM

At the World Robot Conference being held in Beijing, the display of humanoid robots has become the absolute focus of the scene. At the Stardust Intelligent booth, the AI ​​robot assistant S1 performed three major performances of dulcimer, martial arts, and calligraphy in one exhibition area, capable of both literary and martial arts. , attracted a large number of professional audiences and media. The elegant playing on the elastic strings allows the S1 to demonstrate fine operation and absolute control with speed, strength and precision. CCTV News conducted a special report on the imitation learning and intelligent control behind "Calligraphy". Company founder Lai Jie explained that behind the silky movements, the hardware side pursues the best force control and the most human-like body indicators (speed, load) etc.), but on the AI ​​side, the real movement data of people is collected, allowing the robot to become stronger when it encounters a strong situation and learn to evolve quickly. And agile

ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

At this ACL conference, contributors have gained a lot. The six-day ACL2024 is being held in Bangkok, Thailand. ACL is the top international conference in the field of computational linguistics and natural language processing. It is organized by the International Association for Computational Linguistics and is held annually. ACL has always ranked first in academic influence in the field of NLP, and it is also a CCF-A recommended conference. This year's ACL conference is the 62nd and has received more than 400 cutting-edge works in the field of NLP. Yesterday afternoon, the conference announced the best paper and other awards. This time, there are 7 Best Paper Awards (two unpublished), 1 Best Theme Paper Award, and 35 Outstanding Paper Awards. The conference also awarded 3 Resource Paper Awards (ResourceAward) and Social Impact Award (

Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Aug 08, 2024 am 07:02 AM

This afternoon, Hongmeng Zhixing officially welcomed new brands and new cars. On August 6, Huawei held the Hongmeng Smart Xingxing S9 and Huawei full-scenario new product launch conference, bringing the panoramic smart flagship sedan Xiangjie S9, the new M7Pro and Huawei novaFlip, MatePad Pro 12.2 inches, the new MatePad Air, Huawei Bisheng With many new all-scenario smart products including the laser printer X1 series, FreeBuds6i, WATCHFIT3 and smart screen S5Pro, from smart travel, smart office to smart wear, Huawei continues to build a full-scenario smart ecosystem to bring consumers a smart experience of the Internet of Everything. Hongmeng Zhixing: In-depth empowerment to promote the upgrading of the smart car industry Huawei joins hands with Chinese automotive industry partners to provide

Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Sep 03, 2024 pm 05:18 PM

Deep integration of vision and robot learning. When two robot hands work together smoothly to fold clothes, pour tea, and pack shoes, coupled with the 1X humanoid robot NEO that has been making headlines recently, you may have a feeling: we seem to be entering the age of robots. In fact, these silky movements are the product of advanced robotic technology + exquisite frame design + multi-modal large models. We know that useful robots often require complex and exquisite interactions with the environment, and the environment can be represented as constraints in the spatial and temporal domains. For example, if you want a robot to pour tea, the robot first needs to grasp the handle of the teapot and keep it upright without spilling the tea, then move it smoothly until the mouth of the pot is aligned with the mouth of the cup, and then tilt the teapot at a certain angle. . this

Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Aug 22, 2024 pm 08:02 PM

Conference Introduction With the rapid development of science and technology, artificial intelligence has become an important force in promoting social progress. In this era, we are fortunate to witness and participate in the innovation and application of Distributed Artificial Intelligence (DAI). Distributed artificial intelligence is an important branch of the field of artificial intelligence, which has attracted more and more attention in recent years. Agents based on large language models (LLM) have suddenly emerged. By combining the powerful language understanding and generation capabilities of large models, they have shown great potential in natural language interaction, knowledge reasoning, task planning, etc. AIAgent is taking over the big language model and has become a hot topic in the current AI circle. Au

See all articles