How does Lily.com turn off personalized recommendations?
php Editor Banana will explain to you how Baihe.com makes personalized recommendations. As a dating platform dedicated to helping singles find true love, Lily.com intelligently analyzes and recommends suitable partners through multi-dimensional data such as user profile, browsing history, interests and hobbies. Through the intelligent matching algorithm, the system can accurately push objects that match the user's preferences and improve the user's matching success rate. Want to know more about the secrets of personalized recommendations on Baihe.com? Please read on!
First, open Baihe.com APP on your mobile phone. After entering, click "My" in the lower right corner of the page to enter the personal center page, and then click the hexagonal "Settings" icon in the upper left corner to open the setting options.
#2. After entering the settings page, there is a "Personalized Recommended Settings", click on this item to enter.
#3. Next, there is a "Personalized Recommendation Switch" in the lower part of the entered page, and there is a switch button behind it. Click the circular slider above to set it to gray-white to turn it off.
The above is the detailed content of How does Lily.com turn off personalized recommendations?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



With the development of Internet technology and the era of information explosion, how to find content that meets one's needs from massive data has become a topic of public concern. The personalized recommendation system exudes endless light at this time. This article will introduce a personalized recommendation system based on user behavior implemented in Java. 1. Introduction to the Personalized Recommendation System The personalized recommendation system provides users with personalized recommendation services based on the user’s historical behavior, preferences, as well as multi-dimensional related factors such as item information, time and space in the system. Through a personalized recommendation system,

PHP study notes: Recommendation system and personalized recommendations, specific code examples are required Introduction: In today's Internet era, recommendation systems have become one of the important functions of many websites and applications. By using machine learning and data mining technologies, recommendation systems can recommend the most relevant content and products to users based on their behavior and interests, improving user experience and website interactivity. Personalized recommendation is an important algorithm of the recommendation system, which can customize personalized recommendation results based on the user's preferences and historical behavior. The basic principles of recommendation system

How to use PHP to implement intelligent recommendations and personalized recommendation functions Introduction: In today's Internet era, personalized recommendation systems have been widely used in various fields, such as e-commerce, social media, and news information. Intelligent recommendation and personalized recommendation functions play an important role in improving user experience, increasing user stickiness and increasing conversion rate. This article will introduce how to use PHP to implement intelligent recommendation and personalized recommendation functions, and provide relevant code examples. 1. Principle of Intelligent Recommendation Intelligent recommendation is based on the user’s historical behavior and personal

With the continuous development of e-commerce and social media, recommendation systems and personalized recommendations have attracted more and more attention. They have played an important role in improving user experience and increasing user retention. So how to develop recommendation systems and personalized recommendations in PHP? here we come to find out. The concept of recommendation system and personalized recommendation A recommendation system is a system that analyzes user behavior, interests, needs and other information to mine content or products that users may be interested in from massive data and make personalized recommendations. Recommendation systems can roughly

How to turn off personalized recommendations in win11? Users can directly select Settings under the Start menu, then select the Personalization option on the window that opens, and then click the Start option on the right to perform the operation. Let this site carefully introduce to users how to turn off Win11 personalized recommendations. How to turn off Windows 11 Personalization Recommendation 1. Right-click Start in the taskbar in the lower left corner. 3. In the window that opens, click the Personalization option in the left column. 5. Finally, turn off the switch buttons on the right side of Show Recently Added Applications and Show Most Commonly Used Applications.

When we use Baidu Wenku, we can set up personalized recommendation content. Here we will introduce the operation method. Interested friends can take a look with me. 1. Click to open the Baidu Wenku app on your mobile phone and click "My" in the lower right corner of the page to switch to it. 2. Find the "Settings" function on my page and click to select it. 3. Next, there is a "Privacy Settings" in the settings page you enter. Click on it when you see it. 4. Click the "Recommended Settings" item on the privacy settings page to enter. 5. Finally, in the recommended setting interface, you will see a switch button behind "Personalized Recommendation". Click the circular slider on it and set it to green to turn it on. The software will be based on our interests and hobbies.

With the continuous development of network technology, video has become an essential part of people's lives. However, for the platform, how to make it easier for users to find their favorite videos and improve user satisfaction has become an urgent problem to be solved. Personalized recommendation algorithms can help the platform achieve this goal and improve user retention and activity. This article will introduce how PHP implements an efficient video recommendation algorithm and provides personalized recommendation services. 1. Principle of recommendation algorithm The recommendation system recommends relevant content based on the user’s historical behavior and preferences.

How to implement recommendation systems and personalized recommendations in UniApp Recommendation systems are widely used in modern Internet applications, including personalized recommendations. As a cross-platform mobile application development framework, UniApp can also implement recommendation systems and personalized recommendation functions. This article will introduce in detail how to implement the recommendation system and personalized recommendations in UniApp, and provide specific code examples. Recommendation systems are an important part of providing personalized services to users. It can provide users with information based on their historical behavior, user portraits and other information.
