Table of Contents
Introduction: Unveiling the mystery of the diffusion model and its "backbone"
1. Entering the world of diffusion model
2. Uncover the mystery of "Backbone"
3. Specific application examples of Backbone in diffusion models
4. Backbone design principles and challenges
5. Frontier Progress and Future Prospects
Conclusion: Backbone builds a bridge to the future
Home Technology peripherals AI Revealing the 'hard core skeleton” behind the diffusion model: understand the key role of Backbone in generative art and intelligent decision-making in one article

Revealing the 'hard core skeleton” behind the diffusion model: understand the key role of Backbone in generative art and intelligent decision-making in one article

Mar 01, 2024 am 10:40 AM
data analysis Model backbone

Revealing the hard core skeleton” behind the diffusion model: understand the key role of Backbone in generative art and intelligent decision-making in one article

Introduction: Unveiling the mystery of the diffusion model and its "backbone"

Nowadays, there are an endless stream of exquisite paintings, audio and video content created by AI, among which there is A technology that works like magic to create amazing works from scratch is Diffusion Model. Deep in the core of its operating mechanism, there is a crucial structure - we call it "backbone". It is this powerful supporting structure that gives the model the ability to learn and understand data. Today, we will analyze the backbone of the diffusion model in a simple and in-depth manner to see how it plays a role in promoting the efficient work of the model.

1. Entering the world of diffusion model

The diffusion model is a deep learning model based on a probabilistic framework. It gradually changes from a clear state to a noise state by simulating data, and then restores it in reverse. The process of clarifying the state, thereby generating high-quality new data samples. This process not only helps generate new data, but also reveals the inherent laws of complex data distribution.

2. Uncover the mystery of "Backbone"

In the field of machine learning, Backbone usually refers to the part of the neural network responsible for extracting basic features, which is The foundation and core of the model structure. In the diffusion model, the backbone plays a vital role, which is mainly reflected in the following aspects:

  1. Feature extraction: In the denoising process of the diffusion model, the backbone is responsible for The task of feature identification and extraction from data with different noise levels. It converts data such as high-dimensional images or signals into a series of low-dimensional and representative feature vectors, which are the key basis for subsequent reconstruction steps.
  2. Conditional modeling: The backbone of the Diffusion model is often a deep neural network (such as a convolutional neural network CNN or Transformer), which learns the probability distribution characteristics of the data through training. At each iteration, backbone predicts an approximation of the original data based on the current noise state and updates the state at the next moment.
  3. Continuous Optimization: During the entire diffusion-denoising process, backbone continuously adjusts its own parameters to optimize the prediction results and achieve a more accurate fitting of the data distribution. This enables the model to gradually approximate the distribution of real data over sufficient time steps.

3. Specific application examples of Backbone in diffusion models

Take DDPM (Denoising Diffusion Probabilistic Models) as an example. This model uses the U-Net structure as the backbone. This structure combines the advantages of the encoder and the decoder, allowing the model to preserve details while compressing information. Each layer of U-Net participates in the process of removing noise and restoring information, thereby ensuring that the generated image maintains the coherence of the global structure and contains rich local details.

4. Backbone design principles and challenges

When designing the backbone of the diffusion model, multiple factors need to be weighed, including but not limited to:

  • Capacity And efficiency: The model should have enough expressive power to capture the complex latent space while ensuring computational efficiency.
  • Generalization performance: Outside the training set, backbone should be able to effectively handle unseen data distributions.
  • Stability and convergence: The model must be stable during the diffusion and denoising processes, avoid gradient disappearance or explosion problems, and ensure convergence to a reasonable solution.

5. Frontier Progress and Future Prospects

With the deepening of research, scientists are exploring more innovative backbone structures, such as introducing self-attention mechanisms to improve the model's internal understanding of data Relationship understanding, or using dynamic architecture to improve model adaptability and flexibility. In addition, in view of the limitations of diffusion models in generation tasks, such as high computational cost and slow sampling speed, the optimization of backbone will be an important direction to promote technological progress.

Conclusion: Backbone builds a bridge to the future

As a link between the real world and virtual creation, the backbone of the diffusion model plays a key role in understanding and reproducing complex data forms. By continuously researching and improving this infrastructure, we can envision a wide range of applications in the field of artificial intelligence in the future. From artistic creation to scientific data analysis, ja to advanced decision support systems, all will show more eye-catching results because of this solid "backbone".

The above is the detailed content of Revealing the 'hard core skeleton” behind the diffusion model: understand the key role of Backbone in generative art and intelligent decision-making in one article. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Have Crossplay?
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo The world's most powerful open source MoE model is here, with Chinese capabilities comparable to GPT-4, and the price is only nearly one percent of GPT-4-Turbo May 07, 2024 pm 04:13 PM

Imagine an artificial intelligence model that not only has the ability to surpass traditional computing, but also achieves more efficient performance at a lower cost. This is not science fiction, DeepSeek-V2[1], the world’s most powerful open source MoE model is here. DeepSeek-V2 is a powerful mixture of experts (MoE) language model with the characteristics of economical training and efficient inference. It consists of 236B parameters, 21B of which are used to activate each marker. Compared with DeepSeek67B, DeepSeek-V2 has stronger performance, while saving 42.5% of training costs, reducing KV cache by 93.3%, and increasing the maximum generation throughput to 5.76 times. DeepSeek is a company exploring general artificial intelligence

AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao AI subverts mathematical research! Fields Medal winner and Chinese-American mathematician led 11 top-ranked papers | Liked by Terence Tao Apr 09, 2024 am 11:52 AM

AI is indeed changing mathematics. Recently, Tao Zhexuan, who has been paying close attention to this issue, forwarded the latest issue of "Bulletin of the American Mathematical Society" (Bulletin of the American Mathematical Society). Focusing on the topic "Will machines change mathematics?", many mathematicians expressed their opinions. The whole process was full of sparks, hardcore and exciting. The author has a strong lineup, including Fields Medal winner Akshay Venkatesh, Chinese mathematician Zheng Lejun, NYU computer scientist Ernest Davis and many other well-known scholars in the industry. The world of AI has changed dramatically. You know, many of these articles were submitted a year ago.

Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Apr 01, 2024 pm 07:46 PM

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas officially enters the era of electric robots! Yesterday, the hydraulic Atlas just "tearfully" withdrew from the stage of history. Today, Boston Dynamics announced that the electric Atlas is on the job. It seems that in the field of commercial humanoid robots, Boston Dynamics is determined to compete with Tesla. After the new video was released, it had already been viewed by more than one million people in just ten hours. The old people leave and new roles appear. This is a historical necessity. There is no doubt that this year is the explosive year of humanoid robots. Netizens commented: The advancement of robots has made this year's opening ceremony look like a human, and the degree of freedom is far greater than that of humans. But is this really not a horror movie? At the beginning of the video, Atlas is lying calmly on the ground, seemingly on his back. What follows is jaw-dropping

KAN, which replaces MLP, has been extended to convolution by open source projects KAN, which replaces MLP, has been extended to convolution by open source projects Jun 01, 2024 pm 10:03 PM

Earlier this month, researchers from MIT and other institutions proposed a very promising alternative to MLP - KAN. KAN outperforms MLP in terms of accuracy and interpretability. And it can outperform MLP running with a larger number of parameters with a very small number of parameters. For example, the authors stated that they used KAN to reproduce DeepMind's results with a smaller network and a higher degree of automation. Specifically, DeepMind's MLP has about 300,000 parameters, while KAN only has about 200 parameters. KAN has a strong mathematical foundation like MLP. MLP is based on the universal approximation theorem, while KAN is based on the Kolmogorov-Arnold representation theorem. As shown in the figure below, KAN has

Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! Tesla robots work in factories, Musk: The degree of freedom of hands will reach 22 this year! May 06, 2024 pm 04:13 PM

The latest video of Tesla's robot Optimus is released, and it can already work in the factory. At normal speed, it sorts batteries (Tesla's 4680 batteries) like this: The official also released what it looks like at 20x speed - on a small "workstation", picking and picking and picking: This time it is released One of the highlights of the video is that Optimus completes this work in the factory, completely autonomously, without human intervention throughout the process. And from the perspective of Optimus, it can also pick up and place the crooked battery, focusing on automatic error correction: Regarding Optimus's hand, NVIDIA scientist Jim Fan gave a high evaluation: Optimus's hand is the world's five-fingered robot. One of the most dexterous. Its hands are not only tactile

FisheyeDetNet: the first target detection algorithm based on fisheye camera FisheyeDetNet: the first target detection algorithm based on fisheye camera Apr 26, 2024 am 11:37 AM

Target detection is a relatively mature problem in autonomous driving systems, among which pedestrian detection is one of the earliest algorithms to be deployed. Very comprehensive research has been carried out in most papers. However, distance perception using fisheye cameras for surround view is relatively less studied. Due to large radial distortion, standard bounding box representation is difficult to implement in fisheye cameras. To alleviate the above description, we explore extended bounding box, ellipse, and general polygon designs into polar/angular representations and define an instance segmentation mIOU metric to analyze these representations. The proposed model fisheyeDetNet with polygonal shape outperforms other models and simultaneously achieves 49.5% mAP on the Valeo fisheye camera dataset for autonomous driving

The latest from Oxford University! Mickey: 2D image matching in 3D SOTA! (CVPR\'24) The latest from Oxford University! Mickey: 2D image matching in 3D SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

Project link written in front: https://nianticlabs.github.io/mickey/ Given two pictures, the camera pose between them can be estimated by establishing the correspondence between the pictures. Typically, these correspondences are 2D to 2D, and our estimated poses are scale-indeterminate. Some applications, such as instant augmented reality anytime, anywhere, require pose estimation of scale metrics, so they rely on external depth estimators to recover scale. This paper proposes MicKey, a keypoint matching process capable of predicting metric correspondences in 3D camera space. By learning 3D coordinate matching across images, we are able to infer metric relative

See all articles