Home Operation and Maintenance Linux Operation and Maintenance Technology Sharing: Linux DTS Application and Practice Guide

Technology Sharing: Linux DTS Application and Practice Guide

Mar 01, 2024 pm 06:54 PM
linux dts application key value pair

技术分享:Linux DTS的应用及实践指南

Technical Sharing: Linux DTS Application and Practice Guide

With the widespread application of Linux in embedded systems, Device Tree (Device Tree) serves as a description Tools for hardware device information and resource allocation are becoming increasingly important. In the Linux kernel, Device Tree source files are usually called DTS (Device Tree Source) files. This article will delve into the application and practice guide of Linux DTS, and help readers better understand and use Device Tree through specific code examples.

1. What is Device Tree?

Device Tree is a data structure format used in the Linux kernel to describe hardware platform information. It separates the description information of hardware devices and resources from the kernel source code and exists in the form of a text file similar to a tree structure. When Linux starts, the Bootloader loads the Device Tree file into memory and passes it to the Linux kernel. The kernel initializes the device and allocates resources based on the contents of the Device Tree file at startup.

2. Composition of Device Tree

  1. Node: Device Tree organizes information about hardware devices in units of nodes. In Device Tree, each device corresponds to a node. . Each node describes the type, address, interrupt and other information of the device through keywords and attributes.
  2. Node properties (Property): Node properties can include specific information about the device, such as device address, interrupts, register addresses, etc. Attributes exist in the form of key-value pairs and describe various characteristics of the device through nodes.
  3. include directive: You can use the include directive in a Device Tree file to reference other Device Tree files to facilitate organization and reuse of device description information.

3. How to write a Device Tree file

Next we use a simple example to show how to write a simple Device Tree file to describe an LED device. Assuming the LED is connected to the GPIO1_1 pin, the physical address of GPIO1_1 is 0x44.

First, create a new Device Tree file led.dts with the following content:

/dts-v1/;

/ {
    compatible = "my_led";
    led {
        compatible = "gpio-led";
        status = "okay";

        gpios = <0x1 0x1 0>;
        label = "led_1";
    };
};
Copy after login

In this Device Tree file, we define an LED node, which includes some basic functions of LED. Information, such as the GPIO pin to which the LED is connected, the label of the LED, etc.

4. How to compile and use Device Tree files

In the source code directory of the Linux kernel, there is usually an arch/arm/boot/dts/ directory. We can put the written Device Copy the Tree file led.dts to this directory.

Next, execute the following command in the root directory of the Linux kernel source code to compile the Device Tree file:

make dtbs
Copy after login

After the compilation is completed, a led.dtb file will be generated. This file is the compiled Binary Device Tree file.

During the boot process, the Bootloader needs to load this led.dtb file and pass it to the kernel so that the kernel can initialize the LED device based on the hardware information described in the file.

5. Practice Guide

  1. Understand device tree specifications: When writing Device Tree files, you need to follow the device tree specifications and understand the meanings of various attributes and keywords of nodes in order to Make sure the description is accurate.
  2. Debugging and verification: After writing the Device Tree file, you can use the device tree interpreter (dtc) tool to verify whether the syntax of the file is correct. You can use this tool to view the contents of the Device Tree file through disassembly.
  3. Flexible configuration: Device Tree files can be flexibly configured and modified according to changes in specific hardware platforms to adapt to the needs of different hardware devices.

Through the above practical guide and specific code examples, I hope readers can better understand and use Linux DTS, flexibly configure and manage hardware devices, and improve the stability and maintainability of embedded systems.

The above is the detailed content of Technology Sharing: Linux DTS Application and Practice Guide. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Difference between centos and ubuntu Difference between centos and ubuntu Apr 14, 2025 pm 09:09 PM

The key differences between CentOS and Ubuntu are: origin (CentOS originates from Red Hat, for enterprises; Ubuntu originates from Debian, for individuals), package management (CentOS uses yum, focusing on stability; Ubuntu uses apt, for high update frequency), support cycle (CentOS provides 10 years of support, Ubuntu provides 5 years of LTS support), community support (CentOS focuses on stability, Ubuntu provides a wide range of tutorials and documents), uses (CentOS is biased towards servers, Ubuntu is suitable for servers and desktops), other differences include installation simplicity (CentOS is thin)

Centos stops maintenance 2024 Centos stops maintenance 2024 Apr 14, 2025 pm 08:39 PM

CentOS will be shut down in 2024 because its upstream distribution, RHEL 8, has been shut down. This shutdown will affect the CentOS 8 system, preventing it from continuing to receive updates. Users should plan for migration, and recommended options include CentOS Stream, AlmaLinux, and Rocky Linux to keep the system safe and stable.

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

How to install centos How to install centos Apr 14, 2025 pm 09:03 PM

CentOS installation steps: Download the ISO image and burn bootable media; boot and select the installation source; select the language and keyboard layout; configure the network; partition the hard disk; set the system clock; create the root user; select the software package; start the installation; restart and boot from the hard disk after the installation is completed.

How to use docker desktop How to use docker desktop Apr 15, 2025 am 11:45 AM

How to use Docker Desktop? Docker Desktop is a tool for running Docker containers on local machines. The steps to use include: 1. Install Docker Desktop; 2. Start Docker Desktop; 3. Create Docker image (using Dockerfile); 4. Build Docker image (using docker build); 5. Run Docker container (using docker run).

What are the backup methods for GitLab on CentOS What are the backup methods for GitLab on CentOS Apr 14, 2025 pm 05:33 PM

Backup and Recovery Policy of GitLab under CentOS System In order to ensure data security and recoverability, GitLab on CentOS provides a variety of backup methods. This article will introduce several common backup methods, configuration parameters and recovery processes in detail to help you establish a complete GitLab backup and recovery strategy. 1. Manual backup Use the gitlab-rakegitlab:backup:create command to execute manual backup. This command backs up key information such as GitLab repository, database, users, user groups, keys, and permissions. The default backup file is stored in the /var/opt/gitlab/backups directory. You can modify /etc/gitlab

What to do after centos stops maintenance What to do after centos stops maintenance Apr 14, 2025 pm 08:48 PM

After CentOS is stopped, users can take the following measures to deal with it: Select a compatible distribution: such as AlmaLinux, Rocky Linux, and CentOS Stream. Migrate to commercial distributions: such as Red Hat Enterprise Linux, Oracle Linux. Upgrade to CentOS 9 Stream: Rolling distribution, providing the latest technology. Select other Linux distributions: such as Ubuntu, Debian. Evaluate other options such as containers, virtual machines, or cloud platforms.

How to mount hard disk in centos How to mount hard disk in centos Apr 14, 2025 pm 08:15 PM

CentOS hard disk mount is divided into the following steps: determine the hard disk device name (/dev/sdX); create a mount point (it is recommended to use /mnt/newdisk); execute the mount command (mount /dev/sdX1 /mnt/newdisk); edit the /etc/fstab file to add a permanent mount configuration; use the umount command to uninstall the device to ensure that no process uses the device.

See all articles