


The death row of the GIL: Breaking concurrency limits and freeing Python
Break the shackles of python GILLock
Python's Global Interpreter Lock (GIL) is a protection mechanism that prevents multiple threads from executing bytecode simultaneously. While it ensures the threadsafety of the Python interpreter, it does so at the expense of concurrency, especially in CPU-intensive tasks.
To bypass GIL restrictions, there are several options:
Multithreading
Multi-threading allows the creation of parallel threads within a single Python process. Although the GIL still prevents threads from executing Python bytecode concurrently, they can perform I/O operations, run C extensions, or execute native code concurrently.
Demo code:
import threading def io_bound_task(): with open("large_file.txt", "r") as f: data = f.read() def cpu_bound_task(): for i in range(1000000): i * i threads = [] threads.append(threading.Thread(target=io_bound_task)) threads.append(threading.Thread(target=cpu_bound_task)) for thread in threads: thread.start() for thread in threads: thread.join()
In this example, io_bound_task
is I/O-bound and cpu_bound_task
is CPU-bound. Since the GIL does not block I/O operations, two threads can execute concurrently.
process
Unlike threads, processes are operating system level concurrent entities. They have their own memory space and operating system resources and are therefore not restricted by the GIL.
Demo code:
import multiprocessing def cpu_bound_task(n): for i in range(1000000): i * i if __name__ == "__main__": processes = [] for i in range(4): processes.append(multiprocessing.Process(target=cpu_bound_task, args=(i,))) for process in processes: process.start() for process in processes: process.join()
In this example, we create 4 processes, each running a CPU-intensive task. Since the GIL is restricted to a single process, these tasks can be executed in parallel.
AsynchronousProgramming
Asynchronous programming is a non-blocking programming paradigm that allows events to be triggered without waiting for results. It uses techniques such as event loops and callbacks, allowing multiple tasks to be executed in parallel, even if they have GIL locks.
Demo code:
import asyncio async def io_bound_task(): reader, writer = await asyncio.open_connection("example.com", 80) writer.write(b"GET / Http/1.1 ") data = await reader.read(1024) print(data.decode()) async def main(): await asyncio.gather(io_bound_task(), io_bound_task()) asyncio.run(main())
In this example, we use the asyncio library to perform two I/O-intensive tasks. Since asyncio uses an event loop, these tasks can execute concurrently, even if they have GIL locks.
in conclusion
By leveraging multi-threading, processes, and asynchronous programming techniques, we can break the limitations of the GIL and unleash Python's concurrency potential. This is critical to improve performance on CPU-intensive tasks and enhance scalability of large applications. Choosing the best approach depends on your application's specific needs and available resources.
The above is the detailed content of The death row of the GIL: Breaking concurrency limits and freeing Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



In C++ concurrent programming, the concurrency-safe design of data structures is crucial: Critical section: Use a mutex lock to create a code block that allows only one thread to execute at the same time. Read-write lock: allows multiple threads to read at the same time, but only one thread to write at the same time. Lock-free data structures: Use atomic operations to achieve concurrency safety without locks. Practical case: Thread-safe queue: Use critical sections to protect queue operations and achieve thread safety.

In C++ multi-threaded programming, the role of synchronization primitives is to ensure the correctness of multiple threads accessing shared resources. It includes: Mutex (Mutex): protects shared resources and prevents simultaneous access; Condition variable (ConditionVariable): thread Wait for specific conditions to be met before continuing execution; atomic operation: ensure that the operation is executed in an uninterruptible manner.

Mutexes are used in C++ to handle multi-threaded shared resources: create mutexes through std::mutex. Use mtx.lock() to obtain a mutex and provide exclusive access to shared resources. Use mtx.unlock() to release the mutex.

3 common problems and solutions in asynchronous programming in Java frameworks: Callback Hell: Use Promise or CompletableFuture to manage callbacks in a more intuitive style. Resource contention: Use synchronization primitives (such as locks) to protect shared resources, and consider using thread-safe collections (such as ConcurrentHashMap). Unhandled exceptions: Explicitly handle exceptions in tasks and use an exception handling framework (such as CompletableFuture.exceptionally()) to handle exceptions.

Multi-threaded program testing faces challenges such as non-repeatability, concurrency errors, deadlocks, and lack of visibility. Strategies include: Unit testing: Write unit tests for each thread to verify thread behavior. Multi-threaded simulation: Use a simulation framework to test your program with control over thread scheduling. Data race detection: Use tools to find potential data races, such as valgrind. Debugging: Use a debugger (such as gdb) to examine the runtime program status and find the source of the data race.

In a multi-threaded environment, C++ memory management faces the following challenges: data races, deadlocks, and memory leaks. Countermeasures include: 1. Use synchronization mechanisms, such as mutexes and atomic variables; 2. Use lock-free data structures; 3. Use smart pointers; 4. (Optional) implement garbage collection.

The Go framework uses Go's concurrency and asynchronous features to provide a mechanism for efficiently handling concurrent and asynchronous tasks: 1. Concurrency is achieved through Goroutine, allowing multiple tasks to be executed at the same time; 2. Asynchronous programming is implemented through channels, which can be executed without blocking the main thread. Task; 3. Suitable for practical scenarios, such as concurrent processing of HTTP requests, asynchronous acquisition of database data, etc.

In multithreaded C++, exception handling follows the following principles: timeliness, thread safety, and clarity. In practice, you can ensure thread safety of exception handling code by using mutex or atomic variables. Additionally, consider reentrancy, performance, and testing of your exception handling code to ensure it runs safely and efficiently in a multi-threaded environment.
