


Shadows of the GIL: Exploring the dark side of Python concurrency
The Essence of GIL
The GIL is a mutually exclusive lock used to serialize access to the underlying CPython interpreter object within the python interpreter. It ensures thread safety by preventing multiple threads from modifying shared data structures simultaneously. When a thread acquires the GIL, it has exclusive access to the interpreter, and other threads must wait until the GIL is released.
Impact of GIL
The GIL has a significant impact on Python's concurrency. Since only one thread can execute bytecode at the same time, when one thread is running intensive calculations, other threads will be blocked and unable to execute concurrently. This is especially problematic on multi-core systems, since only one core can be utilized to execute Python code.
Demo GIL
The following code demonstrates the impact of GIL on Python concurrency:
import threading import time def worker(): while True: # 模拟计算密集型操作 time.sleep(0.1) # 创建多个线程并启动它们 threads = [] for i in range(4): thread = threading.Thread(target=worker) threads.append(thread) thread.start() # 等待所有线程完成 for thread in threads: thread.join()
Without the GIL, all 4 threads will run simultaneously and utilize all available cores. However, due to the GIL, these threads will be serialized, resulting in performance degradation.
Bypass GIL
Although the GIL limits true concurrency in Python, there are several techniques you can use to get around it:
- Multiple processes: Create multiple Python processes, each with its own GIL, allowing true parallel execution.
- Third-party concurrency libraries: Use third-party libraries such as asyncio, Gevent or Tornado, which provide their own concurrency model, bypassing the GIL.
- Cython: Compiles Python code into C extensions, enabling GIL-agnostic concurrency.
alternative plan
In addition to techniques to bypass the GIL, there are alternatives available for concurrency in Python:
- Coroutines: Use coroutines to allow multiple tasks to be paused and resumed in the same thread, thereby achieving pseudo-concurrency.
- Event-driven programming: Use an event-driven framework such as asyncio to schedule and execute tasks when available events occur.
in conclusion
The GIL is a limiting factor in Python concurrency that can limit the parallelism of intensive computations running on multi-core systems. While there are techniques to bypass or replace the GIL, understanding its impact is important to optimizing the performance of your Python application. By weighing different concurrency approaches, developers can maximize the power of Python while avoiding the limitations of the GIL.
The above is the detailed content of Shadows of the GIL: Exploring the dark side of Python concurrency. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

The H5 page needs to be maintained continuously, because of factors such as code vulnerabilities, browser compatibility, performance optimization, security updates and user experience improvements. Effective maintenance methods include establishing a complete testing system, using version control tools, regularly monitoring page performance, collecting user feedback and formulating maintenance plans.

Although distinct and distinct are related to distinction, they are used differently: distinct (adjective) describes the uniqueness of things themselves and is used to emphasize differences between things; distinct (verb) represents the distinction behavior or ability, and is used to describe the discrimination process. In programming, distinct is often used to represent the uniqueness of elements in a collection, such as deduplication operations; distinct is reflected in the design of algorithms or functions, such as distinguishing odd and even numbers. When optimizing, the distinct operation should select the appropriate algorithm and data structure, while the distinct operation should optimize the distinction between logical efficiency and pay attention to writing clear and readable code.

!x Understanding !x is a logical non-operator in C language. It booleans the value of x, that is, true changes to false, false changes to true. But be aware that truth and falsehood in C are represented by numerical values rather than boolean types, non-zero is regarded as true, and only 0 is regarded as false. Therefore, !x deals with negative numbers the same as positive numbers and is considered true.

There is no built-in sum function in C for sum, but it can be implemented by: using a loop to accumulate elements one by one; using a pointer to access and accumulate elements one by one; for large data volumes, consider parallel calculations.

How to obtain dynamic data of 58.com work page while crawling? When crawling a work page of 58.com using crawler tools, you may encounter this...

PS "Loading" problems are caused by resource access or processing problems: hard disk reading speed is slow or bad: Use CrystalDiskInfo to check the hard disk health and replace the problematic hard disk. Insufficient memory: Upgrade memory to meet PS's needs for high-resolution images and complex layer processing. Graphics card drivers are outdated or corrupted: Update the drivers to optimize communication between the PS and the graphics card. File paths are too long or file names have special characters: use short paths and avoid special characters. PS's own problem: Reinstall or repair the PS installer.

Copying and pasting the code is not impossible, but it should be treated with caution. Dependencies such as environment, libraries, versions, etc. in the code may not match the current project, resulting in errors or unpredictable results. Be sure to ensure the context is consistent, including file paths, dependent libraries, and Python versions. Additionally, when copying and pasting the code for a specific library, you may need to install the library and its dependencies. Common errors include path errors, version conflicts, and inconsistent code styles. Performance optimization needs to be redesigned or refactored according to the original purpose and constraints of the code. It is crucial to understand and debug copied code, and do not copy and paste blindly.
