


Navigating the GIL Minefield: An Adventure Guide to Concurrent Python
- python
- ConcurrencySex
- GIL
- Multithreading
- multi-Progress
Understand the limitations of GIL
GIL is a mechanism in Python that allows only one thread to execute bytecode at a time. This is critical for memory management and thread safety, but it also limits the parallelism of multi-threaded programs. The GIL mainly affects CPU-intensive tasks since they cannot be executed in parallel.
Tips for bypassing the GILThere are several ways to bypass GIL restrictions:
- Use multiple processes:
- Processes are independent of the GIL, so you can use multiple processes to perform CPU-intensive tasks. Code example:
import multiprocessing def task(n): # 执行 CPU 密集型任务 return n * n if __name__ == "__main__": pool = multiprocessing.Pool(4)# 创建一个进程池 results = pool.map(task, range(10000))# 使用进程池执行任务 print(results)
Copy after login
- Use GIL-friendly libraries:
- Some libraries (such as concurrent.futures and
multiprocessing.dummy
) are GIL-friendly and use coroutines or Multiple processes to bypass the GIL.Code example:
import concurrent.futures def task(n): # 执行 CPU 密集型任务 return n * n if __name__ == "__main__": with concurrent.futures.ThreadPoolExecutor() as executor: results = executor.map(task, range(10000))# 使用 GIL 友好的线程池执行任务 print(results)
Copy after login
- Using C extensions:
- The GIL only works with Python bytecode, so you can use C extensions to perform CPU-intensive tasks. However, this requires a higher level of programming skills. Code example:
#include <Python.h> static PyObject* task(PyObject* self, PyObject* args) { int n; if (!PyArg_ParseTuple(args, "i", &n)) { return NULL; } // 执行 CPU 密集型任务 int result = n * n; return Py_BuildValue("i", result); } static PyMethodDef methods[] = { {"task", task, METH_VARARGS, "Task function"}, {NULL, NULL, 0, NULL} }; static struct PyModuleDef module = { PyModuleDef_HEAD_INIT, "mymodule", NULL, -1, methods }; PyMODINIT_FUNC PyInit_mymodule(void) { return PyModule_Create(&module); }
Copy after login
- Using asyncio:
- asyncio is an asynchronous I/O library for Python that uses coroutines to bypass the GIL. Code example:
import asyncio async def task(n): # 执行 CPU 密集型任务 return n * n async def main(): tasks = [task(i) for i in range(10000)] results = await asyncio.gather(*tasks)# 并行执行任务 print(results) if __name__ == "__main__": asyncio.run(main())
Copy after login
When bypassing the GIL, you need to pay attention to the following points:
- Data races:
- Bypassing the GIL may lead to data races, so synchronization primitives (such as locks) need to be used to protect shared data. Debugging Difficulty:
- Bypassing the GIL may make debugging difficult because multiple threads may be executing simultaneously. Performance considerations:
- Bypassing the GIL does not always improve performance, especially if there is severe GIL lock contention.
Bypassing the GIL is a powerful way to improve concurrency in Python, but it also needs to be used with caution. By using multi-process, GIL-friendly libraries, C extensions, or asyncio, you can bypass the limitations of the GIL while avoiding potential pitfalls. With careful consideration and proper implementation, you can take full advantage of Python's concurrency capabilities and improve the performance and scalability of your applications.
The above is the detailed content of Navigating the GIL Minefield: An Adventure Guide to Concurrent Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex
