Home > Web Front-end > JS Tutorial > Data structures and algorithms in JavaScript (5): Classic KMP algorithm_javascript skills

Data structures and algorithms in JavaScript (5): Classic KMP algorithm_javascript skills

WBOY
Release: 2016-05-16 15:54:06
Original
1683 people have browsed it

KMP algorithm and BM algorithm

KMP is a classic algorithm for prefix matching and BM suffix matching. It can be seen that the difference between prefix matching and suffix matching is only in the order of comparison

Prefix matching means: the comparison of the pattern string and the parent string is from left to right, and the movement of the pattern string is also from left to right

Suffix matching means: the comparison of the pattern string and the parent string is from right to left, and the movement of the pattern string is from left to right.

Through the previous chapter it is obvious that the BF algorithm is also a prefix algorithm, but the efficiency of one-by-one matching is very arrogant. Naturally, it is not necessary to mention O(mn). KMP, which is annoying online, explains a lot. They are basically taking the high-level route and you may be confused. I tried to use my own understanding to describe it in the most down-to-earth way

KMP

KMP is also an optimized version of the prefix algorithm. The reason why it is called KMP is the abbreviation of the three names of Knuth, Morris, and Pratt. Compared with BF, the optimization point of the KMP algorithm is "the distance of each backward movement" It will dynamically adjust the moving distance of each pattern string. BF is 1 every time,

Not necessarily for KMP

As shown in the figure, the difference between BF and KMP pre-algorithm is compared

I compared the pictures and found out:

Search for the pattern string P in the text string T. When it naturally matches the sixth letter c, it is found that the second level is inconsistent. Then the BF method is to move the entire pattern string P by one place, and KMP is to move it by two places. .

We know the matching method of BF, but why does KMP move two digits instead of one or three or four digits?

Let’s explain the previous picture. The pattern string P is correct when it matches ababa, and it is wrong when it matches c. Then the idea of ​​​​the KMP algorithm is: ababa is correctly matched. Information, can we use this information to not move the "search position" back to the position that has been compared, but continue to move it backward, which improves efficiency.

Then the question is, how do I know how many positions to move?

The authors of this offset algorithm KMP have summarized it for us:

Copy code The code is as follows:

Shifting digits = Number of matched characters - Corresponding partial matching value

The offset algorithm is only related to substrings, not text strings, so special attention needs to be paid here

So how do we understand the number of matched characters in the substring and the corresponding partial matching value?

Matched characters:

Copy code The code is as follows:

T : abababaabab
p : ababacb

The red mark in p is the matched character, which is easy to understand

Partial match value:

This is the core algorithm, and it is also difficult to understand

If:

Copy code The code is as follows:

T:aaronaabbcc
P:aaronaac

We can observe this text. If we make an error when matching c, where will our next move be based on the previous structure? Where is the most reasonable move?
Copy code The code is as follows:

aaronaabbcc
aaronaac

That is to say: within the pattern text, if the beginning and end of a certain paragraph of characters are the same, then this paragraph of content can be skipped during natural filtering. This idea is also reasonable

Knowing this rule, the partial matching table algorithm given is as follows:

First of all, you need to understand two concepts: "prefix" and "suffix". "Prefix" refers to all the head combinations of a string except the last character; "suffix" refers to all the tail combinations of a string except the first character.

"Partial matching value" is the length of the longest common element between "prefix" and "suffix""

Let’s take a look at aaronaac’s division if it is a BF match.

Displacement of BF: a,aa,aar,aaro,aaron,aarona,aaronaa,aaronaac

So what about the divisions of KMP? Here we need to introduce prefixes and suffixes

Let’s first look at the results of the KMP partial matching table:

Copy code The code is as follows:

a a r o n a a c
[0, 1, 0, 0, 0, 1, 2, 0]

I am definitely confused, so don’t worry, let’s break it down, prefixes and suffixes

Copy code The code is as follows:

Match string: "Aaron"
Prefix: A, Aa, Aar, Aaro
Suffix: aron,ron,on,n

Moving position: In fact, it is to compare the prefix and suffix of each matched character to see if they are equal, and then calculate the total length

Decomposition of partial matching table

The matching table algorithm in KMP, where p represents the prefix, n represents the suffix, and r represents the result

Copy code The code is as follows:

a,        p=>0, n=>0 r = 0

aa,      p=>[a], n=>[a], r = a.length => 1

aar, p=>[a,aa], n=>[r,ar] ,r = 0

aaro, p=>[a,aa,aar], n=>[o,ra,aro] ,r = 0

aaron p=>[a,aa,aar,aaro], n=>[n,on,ron,aron] ,r = 0

aarona, p=>[a,aa,aar,aaro,aaron], n=>[a,na,ona,rona,arona] ,r = a.lenght = 1

aaronaa, p=>[a,aa,aar,aaro,aaron,aarona], n=>[a,aa,naa,onaa,ronaa,aronaa] , r = Math.max(a.length ,aa.length) = 2

aaronaac p=>[a,aa,aar,aaro,aaron,aarona], n=>[c,ac,aac,naac,onaac,ronaac] r = 0

Similar to the BF algorithm, first decompose the position of each possible matching subscript and cache it. When matching, use this "partial matching table" to locate the number of digits that need to be moved

So the final result of aaronaac’s matching table is 0,1,0,0,0,1,2,0.

The JS version of KMP will be implemented below, there are 2 types

KMP implementation (1): KMP caching matching table

KMP implementation (2): dynamically calculate next KMP


KMP implementation (1)

Matching table

The most important thing in the KMP algorithm is the matching table. If the matching table is not needed, then it is the implementation of BF. Adding the matching table is KMP

The matching table determines the next displacement count

Based on the rules of the matching table above, we design a kmpGetStrPartMatchValue method

function kmpGetStrPartMatchValue(str) {
   var prefix = [];
   var suffix = [];
   var partMatch = [];
   for (var i = 0, j = str.length; i < j; i++) {
    var newStr = str.substring(0, i + 1);
    if (newStr.length == 1) {
     partMatch[i] = 0;
    } else {
     for (var k = 0; k < i; k++) {
      //前缀
      prefix[k] = newStr.slice(0, k + 1);
      //后缀
      suffix[k] = newStr.slice(-k - 1);
      //如果相等就计算大小,并放入结果集中
      if (prefix[k] == suffix[k]) {
       partMatch[i] = prefix[k].length;
      }
     }
     if (!partMatch[i]) {
      partMatch[i] = 0;
     }
    }
   }
   return partMatch;
  }
Copy after login

Completely in accordance with the implementation of the matching table algorithm in KMP, a->aa->aar->aaro->aaron->aarona-> is decomposed through str.substring(0, i 1) aaronaa-aaronaac

Then calculate the length of the common elements through prefix and suffix in each decomposition

Backoff Algorithm

KMP is also a front-end algorithm. You can completely transfer the BF one. The only modification is that BF directly adds 1 when backtracking. When KMP backtracks, we can calculate the next value through the matching table

//子循环
for (var j = 0; j < searchLength; j++) {
  //如果与主串匹配
  if (searchStr.charAt(j) == sourceStr.charAt(i)) {
    //如果是匹配完成
    if (j == searchLength - 1) {
     result = i - j;
     break;
    } else {
     //如果匹配到了,就继续循环,i++是用来增加主串的下标位
     i++;
    }
  } else {
   //在子串的匹配中i是被叠加了
   if (j > 1 && part[j - 1] > 0) {
    i += (i - j - part[j - 1]);
   } else {
    //移动一位
    i = (i - j)
   }
   break;
  }
}
Copy after login

The red mark is the core point of KMP. The value of next = the number of matched characters - the corresponding partial matching value

Complete KMP algorithm

<!doctype html><div id="test2"><div><script type="text/javascript">
 

  function kmpGetStrPartMatchValue(str) {
   var prefix = [];
   var suffix = [];
   var partMatch = [];
   for (var i = 0, j = str.length; i < j; i++) {
    var newStr = str.substring(0, i + 1);
    if (newStr.length == 1) {
     partMatch[i] = 0;
    } else {
     for (var k = 0; k < i; k++) {
      //取前缀
      prefix[k] = newStr.slice(0, k + 1);
      suffix[k] = newStr.slice(-k - 1);
      if (prefix[k] == suffix[k]) {
       partMatch[i] = prefix[k].length;
      }
     }
     if (!partMatch[i]) {
      partMatch[i] = 0;
     }
    }
   }
   return partMatch;
  }



function KMP(sourceStr, searchStr) {
  //生成匹配表
  var part     = kmpGetStrPartMatchValue(searchStr);
  var sourceLength = sourceStr.length;
  var searchLength = searchStr.length;
  var result;
  var i = 0;
  var j = 0;

  for (; i < sourceStr.length; i++) { //最外层循环,主串

    //子循环
    for (var j = 0; j < searchLength; j++) {
      //如果与主串匹配
      if (searchStr.charAt(j) == sourceStr.charAt(i)) {
        //如果是匹配完成
        if (j == searchLength - 1) {
         result = i - j;
         break;
        } else {
         //如果匹配到了,就继续循环,i++是用来增加主串的下标位
         i++;
        }
      } else {
       //在子串的匹配中i是被叠加了
       if (j > 1 && part[j - 1] > 0) {
        i += (i - j - part[j - 1]);
       } else {
        //移动一位
        i = (i - j)
       }
       break;
      }
    }

    if (result || result == 0) {
     break;
    }
  }


  if (result || result == 0) {
   return result
  } else {
   return -1;
  }
}

 var s = "BBC ABCDAB ABCDABCDABDE";
 var t = "ABCDABD";


 show('indexOf',function() {
  return s.indexOf(t)
 })

 show('KMP',function() {
  return KMP(s,t)
 })

 function show(bf_name,fn) {
  var myDate = +new Date()
  var r = fn();
  var div = document.createElement('div')
  div.innerHTML = bf_name +'算法,搜索位置:' + r + ",耗时" + (+new Date() - myDate) + "ms";
   document.getElementById("test2").appendChild(div);
 }


</script></div></div>

Copy after login

KMP(二)

第一种kmp的算法很明显,是通过缓存查找匹配表也就是常见的空间换时间了。那么另一种就是时时查找的算法,通过传递一个具体的完成字符串,算出这个匹配值出来,原理都一样

生成缓存表的时候是整体全部算出来的,我们现在等于只要挑其中的一条就可以了,那么只要算法定位到当然的匹配即可

next算法

function next(str) {
  var prefix = [];
  var suffix = [];
  var partMatch;
  var i = str.length
  var newStr = str.substring(0, i + 1);
  for (var k = 0; k < i; k++) {
   //取前缀
   prefix[k] = newStr.slice(0, k + 1);
   suffix[k] = newStr.slice(-k - 1);
   if (prefix[k] == suffix[k]) {
    partMatch = prefix[k].length;
   }
  }
  if (!partMatch) {
   partMatch = 0;
  }
  return partMatch;
}
Copy after login

其实跟匹配表是一样的,去掉了循环直接定位到当前已成功匹配的串了

完整的KMP.next算法

<!doctype html><div id="testnext"><div><script type="text/javascript">
 
  function next(str) {
    var prefix = [];
    var suffix = [];
    var partMatch;
    var i = str.length
    var newStr = str.substring(0, i + 1);
    for (var k = 0; k < i; k++) {
     //取前缀
     prefix[k] = newStr.slice(0, k + 1);
     suffix[k] = newStr.slice(-k - 1);
     if (prefix[k] == suffix[k]) {
      partMatch = prefix[k].length;
     }
    }
    if (!partMatch) {
     partMatch = 0;
    }
    return partMatch;
  }

  function KMP(sourceStr, searchStr) {
    var sourceLength = sourceStr.length;
    var searchLength = searchStr.length;
    var result;
    var i = 0;
    var j = 0;

    for (; i < sourceStr.length; i++) { //最外层循环,主串

      //子循环
      for (var j = 0; j < searchLength; j++) {
        //如果与主串匹配
        if (searchStr.charAt(j) == sourceStr.charAt(i)) {
          //如果是匹配完成
          if (j == searchLength - 1) {
           result = i - j;
           break;
          } else {
           //如果匹配到了,就继续循环,i++是用来增加主串的下标位
           i++;
          }
        } else {
         if (j > 1) {
          i += i - next(searchStr.slice(0,j));
         } else {
          //移动一位
          i = (i - j)
         }
         break;
        }
      }

      if (result || result == 0) {
       break;
      }
    }


    if (result || result == 0) {
     return result
    } else {
     return -1;
    }
  }

 var s = "BBC ABCDAB ABCDABCDABDE";
 var t = "ABCDAB";


  show('indexOf',function() {
   return s.indexOf(t)
  })

  show('KMP.next',function() {
   return KMP(s,t)
  })

  function show(bf_name,fn) {
   var myDate = +new Date()
   var r = fn();
   var div = document.createElement('div')
   div.innerHTML = bf_name +'算法,搜索位置:' + r + ",耗时" + (+new Date() - myDate) + "ms";
    document.getElementById("testnext").appendChild(div);
  }

</script></div></div>

Copy after login

git代码下载: https://github.com/JsAaron/data_structure

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template