Home Operation and Maintenance Linux Operation and Maintenance Understanding the disk layout of ext2 file system in Linux

Understanding the disk layout of ext2 file system in Linux

Mar 14, 2024 am 11:21 AM
linux Linux operating system disk layout ext file system

Understanding the disk layout of ext2 file system in Linux

In the Linux operating system, there are many file systems used, among which the ext2 file system is the most basic and common one. Understanding the disk layout of the ext2 file system is important to understanding how the file system works and how data is stored. In this article, we will introduce the disk layout of the ext2 file system, including super block, block group descriptor table, inode table, data block, etc., and provide specific code examples to help readers better understand.

1. Super Block

In the ext2 file system, the super block is one of the metadata of the file system and is used to record the basic information of the entire file system. The superblock is usually located at the beginning of the disk and is used to describe the state and structure of the entire file system. The following is a simplified example of the super block structure:

struct ext2_super_block {
    uint32_t s_inodes_count;      // 文件系统中inode总数
    uint32_t s_blocks_count;      // 文件系统中块总数
    uint32_t s_free_blocks_count; // 空闲块数量
    uint32_t s_free_inodes_count; // 空闲inode数量
    // 其他字段
    // ...
};
Copy after login

The super block contains information such as the total number of inodes, the total number of blocks, the number of free blocks, and the number of free inodes in the file system. By reading the superblock, you can obtain the overall information and status of the file system.

2. Block Group Descriptor Table

In the ext2 file system, the disk is divided into several block groups (Block Group). Each block group contains several data blocks, inodes, and block group descriptor tables. The block group descriptor table stores the basic information of each block group, such as the starting block number of the inode table, the starting block number of the free block bitmap, etc. The following is a simplified example of the block group descriptor table structure:

struct ext2_group_desc {
    uint32_t bg_block_bitmap;  // 空闲块位图的起始块号
    uint32_t bg_inode_bitmap;  // inode位图的起始块号
    uint32_t bg_inode_table;   // inode表的起始块号
    // 其他字段
    // ...
};
Copy after login

Through the block group descriptor table, the location of the key data structure in each block group can be found, which facilitates the management and operation of the file system.

3. Inode Table

In the ext2 file system, each file and directory corresponds to an inode node. The inode node records the attribute information of the file (such as file size, permissions, timestamps, etc.) and the pointers to file data blocks. The inode table stores information about all inode nodes and also contains free inode bitmaps to manage the allocation and release of inodes. The following is a simplified inode structure example:

struct ext2_inode {
    mode_t i_mode;              // 文件类型和权限
    uint32_t i_size;            // 文件大小
    uint32_t i_block[EXT2_N_BLOCKS]; // 文件数据块指针
    // 其他字段
    // ...
};
Copy after login

Through the inode table, you can find the inode node of the file, and then obtain the file's attribute information and data block pointer.

4. Data Blocks

In the ext2 file system, data blocks are used to store the actual data content of the file. Data blocks are allocated to files, and file data are scattered and stored in different data blocks. For small files, the data can be stored directly in the data block pointer in the inode node; for large files, the data will be stored in indirect, double indirect, and triple indirect blocks. The following is a simplified example of the data block pointer structure:

struct ext2_dir_block {
    uint32_t block_ptr[EXT2_PTRS_PER_BLOCK]; // 指向数据块的指针
    // 其他字段
    // ...
};
Copy after login

Data blocks are connected through pointers to form a file's data storage linked list. Data blocks provide access to the actual data content of the file.

Through the above introduction to the disk layout of the ext2 file system, we can better understand the organizational structure and data storage method of the file system. In actual programming, the file system can be operated and managed by reading the super block, block group descriptor table, inode table and data block. I hope this article can help readers gain a deeper understanding of the disk layout of the ext2 file system in Linux.

The above is the detailed content of Understanding the disk layout of ext2 file system in Linux. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Difference between centos and ubuntu Difference between centos and ubuntu Apr 14, 2025 pm 09:09 PM

The key differences between CentOS and Ubuntu are: origin (CentOS originates from Red Hat, for enterprises; Ubuntu originates from Debian, for individuals), package management (CentOS uses yum, focusing on stability; Ubuntu uses apt, for high update frequency), support cycle (CentOS provides 10 years of support, Ubuntu provides 5 years of LTS support), community support (CentOS focuses on stability, Ubuntu provides a wide range of tutorials and documents), uses (CentOS is biased towards servers, Ubuntu is suitable for servers and desktops), other differences include installation simplicity (CentOS is thin)

How to install centos How to install centos Apr 14, 2025 pm 09:03 PM

CentOS installation steps: Download the ISO image and burn bootable media; boot and select the installation source; select the language and keyboard layout; configure the network; partition the hard disk; set the system clock; create the root user; select the software package; start the installation; restart and boot from the hard disk after the installation is completed.

Centos stops maintenance 2024 Centos stops maintenance 2024 Apr 14, 2025 pm 08:39 PM

CentOS will be shut down in 2024 because its upstream distribution, RHEL 8, has been shut down. This shutdown will affect the CentOS 8 system, preventing it from continuing to receive updates. Users should plan for migration, and recommended options include CentOS Stream, AlmaLinux, and Rocky Linux to keep the system safe and stable.

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

Centos options after stopping maintenance Centos options after stopping maintenance Apr 14, 2025 pm 08:51 PM

CentOS has been discontinued, alternatives include: 1. Rocky Linux (best compatibility); 2. AlmaLinux (compatible with CentOS); 3. Ubuntu Server (configuration required); 4. Red Hat Enterprise Linux (commercial version, paid license); 5. Oracle Linux (compatible with CentOS and RHEL). When migrating, considerations are: compatibility, availability, support, cost, and community support.

What to do after centos stops maintenance What to do after centos stops maintenance Apr 14, 2025 pm 08:48 PM

After CentOS is stopped, users can take the following measures to deal with it: Select a compatible distribution: such as AlmaLinux, Rocky Linux, and CentOS Stream. Migrate to commercial distributions: such as Red Hat Enterprise Linux, Oracle Linux. Upgrade to CentOS 9 Stream: Rolling distribution, providing the latest technology. Select other Linux distributions: such as Ubuntu, Debian. Evaluate other options such as containers, virtual machines, or cloud platforms.

How to use docker desktop How to use docker desktop Apr 15, 2025 am 11:45 AM

How to use Docker Desktop? Docker Desktop is a tool for running Docker containers on local machines. The steps to use include: 1. Install Docker Desktop; 2. Start Docker Desktop; 3. Create Docker image (using Dockerfile); 4. Build Docker image (using docker build); 5. Run Docker container (using docker run).

How to mount hard disk in centos How to mount hard disk in centos Apr 14, 2025 pm 08:15 PM

CentOS hard disk mount is divided into the following steps: determine the hard disk device name (/dev/sdX); create a mount point (it is recommended to use /mnt/newdisk); execute the mount command (mount /dev/sdX1 /mnt/newdisk); edit the /etc/fstab file to add a permanent mount configuration; use the umount command to uninstall the device to ensure that no process uses the device.

See all articles