Home > Technology peripherals > AI > Troubleshooting is too annoying, try the super power of GPT

Troubleshooting is too annoying, try the super power of GPT

王林
Release: 2024-03-14 19:52:14
forward
1248 people have browsed it

When using Kubernetes, you will inevitably encounter problems in the cluster, which need to be debugged and repaired to ensure that Pods and services can run normally. Whether you are a beginner or an expert in dealing with complex environments, debugging processes within a cluster is not always easy and can become time-consuming and tedious. In Kubernetes, the key to diagnosing problems is understanding the relationships between components and how they interact with each other. Logging and monitoring tools are key to problem solving and can help you quickly locate and resolve faults. In addition, an in-depth understanding of Kubernetes resource configuration and scheduling mechanism is also an important part of solving problems. When faced with a problem, first make sure your cluster and application are configured correctly. Then, locate the source of the problem by viewing logs, monitoring indicators, and events. Sometimes the problem may involve network configuration, storage issues or bugs in the application itself, which need to be carefully considered. In a cloud native environment, there are a variety of debugging solutions to choose from, which can help you easily access the cluster. Information. However, it is important to note that most solutions do not provide complete contextual information.

In this blog post, I’ll introduce you to K8sGPT, a project that aims to make the superpowers of Kubernetes available to everyone.

Application scenarios of K8sGPTTroubleshooting is too annoying, try the super power of GPTOverview

K8sGPT is a completely open source project developed by a group of experienced cloud native ecosystem experts Engineers launched in April 2023. The core idea of ​​the project is to use artificial intelligence models to provide detailed and contextual explanations for Kubernetes error messages and cluster insights.

PictureTroubleshooting is too annoying, try the super power of GPTThis project has been adopted by two organizations and applied to become a CNCF sandbox project. The vision of this project is to build task-oriented machine learning models for Kubernetes.

The project already supports multiple installation options and different artificial intelligence backends. In this article, I'll show you how to install and start using K8sGPT, the CLI tools and Operators, and how K8sGPT supports other integrations.

Installation

There are various installation options available depending on your preference and operating system. You can find different options in the installation section of the K8sGPT documentation.

The prerequisite for installing K8sGPT as described below is to install Homebrew on a Mac or WSL on a Windows computer.

Next, you can run the following command:

brew tap k8sgpt-ai/k8sgptbrew install k8sgpt
Copy after login
Other installation options

RPM-based installation (RedHat/CentOS/Fedora)

32-bit:

curl -LO https://github.com/k8sgpt-ai/k8sgpt/releases/download/v0.3.6/k8sgpt_386.rpmsudo rpm -ivh k8sgpt_386.rpm
Copy after login

64-bit:

curl -LO https://github.com/k8sgpt-ai/k8sgpt/releases/download/v0.3.6/k8sgpt_amd64.rpmsudo rpm -ivh -i k8sgpt_amd64.rpm
Copy after login

DEB-based installation (Ubuntu/Debian)

32 bit:

curl -LO https://github.com/k8sgpt-ai/k8sgpt/releases/download/v0.3.6/k8sgpt_386.debsudo dpkg -i k8sgpt_386.deb
Copy after login

64 bit:

curl -LO https://github.com/k8sgpt-ai/k8sgpt/releases/download/v0.3.6/k8sgpt_amd64.debsudo dpkg -i k8sgpt_amd64.deb
Copy after login

To verify whether K8sGPT is installed correctly, you can check the installed version:

k8sgpt versionk8sgpt: 0.3.6 (9c0efe6), built at: unknown
Copy after login
K8sGPT CLI

To see all the commands provided by K8sGPT, use the --help flag:

k8sgpt --help
Copy after login
Next, we The AI ​​backend must be authorized. In this article we will use OpenAI.

Prerequisites

The prerequisites for following the next section are having an OpneAI account and a running Kubernetes cluster such as microk8s or minikube which is enough.

After you have an OpneAI account, you need to visit this address https://platform.openai.com/account/api-keys to generate a new API key

Or, you can run the following command , K8sGPT will open the same address in the default browser:

k8sgpt generate
Copy after login
K8sGPT This key is required to interact with OpenAI. Authorize K8sGPT using the newly created API key/token:

k8sgpt auth add openaiEnter openai Key: openai added to the AI backend provider list
Copy after login
You can list your backends using the following command:

k8sgpt auth listDefault:> openaiActive:> openaiUnused:> localai> azureopenai> noopai
Copy after login
Next, we will deploy an abnormal Deployment in the Kubernetes cluster, and the Pod will become the CrashLoopBackOff state. Here is the YAML:

apiVersion: apps/v1kind: Deploymentmetadata:name: nginx-deploymentlabels:app: nginxspec:replicas: 3selector:matchLabels:app: nginxtemplate:metadata:labels:app: nginxspec:containers:- name: nginximage: nginx:1.14.2ports:- containerPort: 80securityContext:readOnlyRootFilesystem: true
Copy after login
Next, we will create the demo namespace and install the deployment for the sample application:

kubectl create ns demonamespace/demo createdkubectl apply -f ./deployment.yaml -n demodeployment.apps/nginx-deployment created
Copy after login
Now you will Seeing that the Pods in our demo namespace throw an error:

PictureTroubleshooting is too annoying, try the super power of GPTIf we look at the events for one of the pods, but we don’t know the specific Cause of the problem:

WarningBackOff 3s (x8 over 87s)kubelet Back-off restarting failed container
Copy after login
Therefore, we can run the K8sGPT command to access more details about why these pods went wrong:

k8sgpt analyse
Copy after login
This will show us the problems k8sGPT found in the cluster:

AI Provider: openai0 demo/nginx-deployment-5f4c7db77b-hq74n(Deployment/nginx-deployment)- Error: back-off 1m20s restarting failed cnotallow=nginx pod=nginx-deployment-5f4c7db77b-hq74n_demo(7854b793-21b7-4f81-86e5-dbb4113f64f4)1 demo/nginx-deployment-5f4c7db77b-phbq8(Deployment/nginx-deployment)- Error: back-off 1m20s restarting failed cnotallow=nginx pod=nginx-deployment-5f4c7db77b-phbq8_demo(74038531-e362-45a6-a436-cf1a6ea46d8a)2 demo/nginx-deployment-5f4c7db77b-shkw6(Deployment/nginx-deployment)- Error: back-off 1m20s restarting failed cnotallow=nginx pod=nginx-deployment-5f4c7db77b-shkw6_demo(2603f332-3e1c-45da-8080-e34dd6d956ad)
Copy after login
To receive more information and suggestions on how to solve the problem, we can use the following --explain flag:

k8sgpt analyse --explain
Copy after login

附加功能

根据你的集群大小和 K8sGPT 在集群中识别的问题数量,你还可以按特定命名空间和工作负载类型进行过滤。

此外,如果你或你的组织担心 OpenAI 或其他后端接收有关你的工作负载的敏感信息,你可以使用--anonymize规避应用的敏感信息。

与其他工具的集成

云原生生态系统中大多数工具的价值源于它们与其他工具的集成程度。

在撰写本文时,K8sGPT 提供了与 Gafana 和 Prometheus 等可观察性工具的轻松集成。此外,还可以为 K8sGPT 编写插件。维护者提供的第一个插件是Trivy,一个一体化的云原生安全扫描器。

你可以使用以下命令列出所有可用的集成:

k8sgpt integration listActive:Unused:> trivy
Copy after login

接下来,我们要激活 Trivy 集成:

k8sgpt integration activate trivy
Copy after login

这将在集群内安装 Trivy Operator(如果尚未安装):

Troubleshooting is too annoying, try the super power of GPT图片

激活集成后,我们可以通过 k8sgpt 过滤器,使用 Trivy 创建的漏洞报告作为 K8sGPT 分析的一部分:

❯ k8sgpt filters listActive:> Pod> VulnerabilityReport (integration)Unused:> Deployment> ReplicaSet> Node> Service> Ingress> StatefulSet> CronJob> PersistentVolumeClaim> HorizontalPodAutoScaler> PodDisruptionBudget> NetworkPolicy
Copy after login

过滤器对应于 k8sgpt 代码中的特定分析器。分析器仅查看相关信息,例如最关键的漏洞。

要使用 VulnerabilityReport 过滤器,请使用以下命令:

k8sgpt analyse --filter=VulnerabilityReport
Copy after login

(FIXME)与之前类似,我们也可以要求 K8sGPT 对扫描提供进一步的解释:

k8sgpt analyse --filter=VulnerabilityReport --explain
Copy after login

K8sGPT Operator

虽然 CLI 工具为集群管理员提供了对其基础设施和工作负载执行即席扫描的功能,但 K8sGPT Operator 在集群中全天候 (24/7) 运行。它是 Kubernetes 原生的,这意味着它作为 Kubernetes 自定义资源运行,并生成作为 YAML 清单存储在集群中的报告。

要安装 Operator,请按照以下命令进行操作:

helm repo add k8sgpt https://charts.k8sgpt.ai/helm repo updatehelm install release k8sgpt/k8sgpt-operator -n k8sgpt-operator-system --create-namespace
Copy after login

如果你想将 K8sGPT 与 Prometheus 和 Grafana 集成,你可以通过向上面的安装提供values.yaml 清单来使用略有不同的安装:

serviceMonitor:enabled: trueGrafanaDashboard:enabled: true
Copy after login

然后安装 Operator 或更新现有安装:

helm install release k8sgpt/k8sgpt-operator -n k8sgpt-operator-system --create-namespace --values values.yaml
Copy after login

在本例中,我们告诉 K8sGPT 还安装一个 ServiceMonitor,它将扫描报告中的指标发送到 Prometheus,并为 K8sGPT 创建一个仪表板。如果你使用了此安装,则还需要安装 kube-prometheus-stack Helm Chart 才能访问 Grafana 和 Prometheus。这可以通过以下命令来完成:

helm repo add prometheus-community https://prometheus-community.github.io/helm-chartshelm repo updatehelm install prom prometheus-community/kube-prometheus-stack -n k8sgpt-operator-system --set prometheus.prometheusSpec.serviceMonitorSelectorNilUsesHelmValues=false
Copy after login

此时,你应该在集群内运行 K8sGPT Operator 和 Prometheus Stack Helm Chart(也是 Kubernetes Operator)。

与我们需要向 CLI 提供 OpenAI API 密钥的方式类似,我们需要使用 API 密钥创建 Kubernetes 密钥。为此,请使用与之前相同的密钥,或者在你的 OpenAI 帐户上生成一个新密钥。

要生成 Kubernetes 密钥,请将你的 OpenAI 密钥粘贴到以下命令中:

export OPENAI_TOKEN=<your api key here>kubectl create secret generic k8sgpt-sample-secret --from-literal=openai-api-key=$OPENAI_TOKEN -n k8sgpt-operator-system</your>
Copy after login

然后,我们需要配置 K8sGPT Operator 以了解要使用哪个版本的 K8sGPT 以及哪个 AI 后端:

apiVersion: core.k8sgpt.ai/v1alpha1kind: K8sGPTmetadata:name: k8sgpt-samplespec:model: gpt-3.5-turbobackend: openainoCache: falseversion: v0.3.2enableAI: truesecret:name: k8sgpt-sample-secretkey: openai-api-key
Copy after login

现在,我们需要将此文件应用到我们的 K8sGPT 集群命名空间:

kubectl apply -f k8sgpt-resource.yaml -n k8sgpt-operator-system
Copy after login

几秒钟内,Operator 将创建新结果:

kubectl get results -n k8sgpt-operator-system
Copy after login

以下是不同命令的屏幕截图,你可以按照这些命令从 K8sGPT Operator 查看结果报告:

Troubleshooting is too annoying, try the super power of GPT从 K8sGPT Operator 查看结果报告

最后,我们将看一下 Grafana 仪表板。端口转发 Grafana 服务以通过 localhost 访问它:

kubectl port-forward service/prom-grafana -n prom 3000:80
Copy after login

打开 localhost:3000,然后导航到 Dashboards>K8sGPT Overview,然后你将看到包含结果的仪表板:

Troubleshooting is too annoying, try the super power of GPTGrafana 中的 K8sGPT 仪表板

参考

  1. 1. https://k8sgpt.ai/
  2. 2. https://docs.k8sgpt.ai/
  3. 3. https://github.com/k8sgpt-ai

The above is the detailed content of Troubleshooting is too annoying, try the super power of GPT. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:51cto.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template