Home > Backend Development > Python Tutorial > Getting Started with Python Data Analysis: From Zero to One, Get Started Quickly

Getting Started with Python Data Analysis: From Zero to One, Get Started Quickly

WBOY
Release: 2024-03-17 09:22:09
forward
536 people have browsed it

Python 数据分析入门:从零到一,快速上手

1. Set up the Python environment

  1. Install python and make sure the version is 3.6 or higher.
  2. Install the necessary libraries: NumPy, pandas, scikit-learn, Matplotlib, Seaborn.
  3. Create a Jupyter Notebook or use your favorite IDE.

2. Data operation and exploration

  1. NumPy: Numerical calculations and operations Arrays.
  2. Pandas: Data structures and operations, such as DataFrame and Series.
  3. Data exploration: Use Pandas functions (such as head(), tail(), info()) and Matplotlib (Data visualization) to explore data.

3. Data cleaning and preparation

  1. Data Cleaning: Handle missing values, outliers and duplicates.
  2. Data preparation: Convert data into the required format for analysis.
  3. scikit-learn: Used for feature scaling, data standardization and data segmentation.

4. Data analysis technology

  1. Descriptive statistics: Calculate the mean, median, standard deviation and other indicators.
  2. Hypothesis testing: Test the statistical significance of data, such as t-test and ANOVA.
  3. Machine Learning: Extract patterns from data using supervised and unsupervised algorithms such as linear regression and K-means clustering.

5. Data visualization

  1. Matplotlib: Create a variety of charts and data visualizations.
  2. Seaborn: A more advanced data visualization library based on Matplotlib.
  3. **Create interactive visualizations using Pandas and Matplotlib/Seaborn.

6. Practical cases

  1. Data import: Import data from CSV, excel or sql database.
  2. Data preprocessing: Clean data, handle missing values ​​and transform data.
  3. Data analysis: Analyze data using descriptive statistics, hypothesis testing, and machine learning techniques.
  4. Data Visualization: Create charts and data visualizations using Matplotlib/Seaborn.

7. Project deployment and collaboration

  1. Create and manage Python projects: Use virtual environments and version control systems.
  2. Deploy Python applications: Use cloud platforms or containerization technologies to deploy models and scripts to production environments.
  3. Team Collaboration: Use git and other collaboration tools to collaborate effectively in a team.

Conclusion

By following the steps in this guide, you will have a solid foundation to confidently perform data analysis using Python. Continuously practicing and exploring new data and techniques, you will become a skilled data analyst, able to unlock value from data and make informed decisions.

The above is the detailed content of Getting Started with Python Data Analysis: From Zero to One, Get Started Quickly. For more information, please follow other related articles on the PHP Chinese website!

source:lsjlt.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template