Table of Contents
1. Network interface
2. Socket
3. TCP/IP协议栈
Home Operation and Maintenance Linux Operation and Maintenance An in-depth explanation of the key components of the Linux protocol stack

An in-depth explanation of the key components of the Linux protocol stack

Mar 20, 2024 pm 12:39 PM
linux Linux operating system protocol stack component

An in-depth explanation of the key components of the Linux protocol stack

As an open source system, the Linux operating system performs well in the field of network communications, and its protocol stack is considered one of the key components. In this article, we will provide an in-depth explanation of the key components of the Linux protocol stack, including network interfaces, sockets, TCP/IP protocol stacks, etc., and use specific code examples to help readers better understand.

1. Network interface

The network interface is the lowest component of the Linux protocol stack and is responsible for sending and receiving network data packets. In Linux, network interfaces are implemented through device drivers, and each network interface has a unique identifier, such as eth0, eth1, etc. We can view the network interface information in the current system through the ifconfig command, as shown below:

ifconfig
Copy after login

In Linux, the socket address structure of the network interface is defined in&lt ;linux/if.h> In the header file, programmers can create a socket bound to the specified network interface by calling socket() and bind(). Here is a simple example code:

#include <sys/types.h>
#include <sys/socket.h>
#include <linux/if.h>

int main() {
    int sockfd;
    struct sockaddr sa;

    sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if(sockfd < 0) {
        perror("socket");
        return -1;
    }

    struct ifreq ifr;
    memset(&ifr, 0, sizeof(ifr));
    strcpy(ifr.ifr_name, "eth0");

    if(setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, (void*)&ifr, sizeof(ifr)) < 0) {
        perror("setsockopt");
        close(sockfd);
        return -1;
    }

    close(sockfd);
}
Copy after login

2. Socket

Socket is the middleware in the Linux protocol stack, responsible for handling communication between the application layer and the transport layer. In Linux, the socket interface is defined in the <sys/socket.h> header file. Programmers can use socket(), bind(), listen(), accept(), connect( ) and other functions to create and manage sockets.

The following is a simple TCP server sample code that implements a simple socket-based Echo server:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#include <string.h>

#define PORT 8080

int main() {
    int sockfd, new_sockfd;
    struct sockaddr_in server_addr, client_addr;
    char buffer[1024];

    sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if(sockfd < 0) {
        perror("socket");
        return -1;
    }

    server_addr.sin_family = AF_INET;
    server_addr.sin_addr.s_addr = INADDR_ANY;
    server_addr.sin_port = htons(PORT);

    if(bind(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {
        perror("bind");
        return -1;
    }

    listen(sockfd, 5);

    while(1) {
       int addrlen = sizeof(client_addr);
       new_sockfd = accept(sockfd, (struct sockaddr*)&client_addr, &addrlen);
       memset(buffer, 0, sizeof(buffer));
       read(new_sockfd, buffer, sizeof(buffer));
       write(new_sockfd, buffer, strlen(buffer));
       close(new_sockfd);
    }

    close(sockfd);
    return 0;
}
Copy after login

3. TCP/IP协议栈

在Linux中,TCP/IP协议栈实现了网络通信中的传输层和网络层协议,例如TCP、UDP、IP等。程序员可以通过socket()函数来创建一个TCP或UDP套接字,通过connect()函数建立连接,通过send()和recv()函数发送和接收数据。

下面是一个简单的TCP客户端示例代码,实现了向Echo服务器发送数据并接收响应:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>

#define PORT 8080
#define SERVER_IP "127.0.0.1"

int main() {
    int sockfd;
    struct sockaddr_in server_addr;
    char buffer[1024];

    sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if(sockfd < 0) {
        perror("socket");
        return -1;
    }

    server_addr.sin_family = AF_INET;
    server_addr.sin_addr.s_addr = inet_addr(SERVER_IP);
    server_addr.sin_port = htons(PORT);

    if(connect(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) < 0) {
        perror("connect");
        return -1;
    }

    strcpy(buffer, "Hello, Server!");
    write(sockfd, buffer, strlen(buffer));
    memset(buffer, 0, sizeof(buffer));
    read(sockfd, buffer, sizeof(buffer));
    printf("Server response: %s
", buffer);

    close(sockfd);
    return 0;
}
Copy after login

通过以上示例代码,读者可以更深入地了解Linux协议栈的关键组成部分,包括网络接口、套接字和TCP/IP协议栈。希望本文能够帮助读者更好地理解Linux网络通信的底层原理,以及如何通过代码来实现网络应用。

The above is the detailed content of An in-depth explanation of the key components of the Linux protocol stack. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to use docker desktop How to use docker desktop Apr 15, 2025 am 11:45 AM

How to use Docker Desktop? Docker Desktop is a tool for running Docker containers on local machines. The steps to use include: 1. Install Docker Desktop; 2. Start Docker Desktop; 3. Create Docker image (using Dockerfile); 4. Build Docker image (using docker build); 5. Run Docker container (using docker run).

How to view the docker process How to view the docker process Apr 15, 2025 am 11:48 AM

Docker process viewing method: 1. Docker CLI command: docker ps; 2. Systemd CLI command: systemctl status docker; 3. Docker Compose CLI command: docker-compose ps; 4. Process Explorer (Windows); 5. /proc directory (Linux).

Difference between centos and ubuntu Difference between centos and ubuntu Apr 14, 2025 pm 09:09 PM

The key differences between CentOS and Ubuntu are: origin (CentOS originates from Red Hat, for enterprises; Ubuntu originates from Debian, for individuals), package management (CentOS uses yum, focusing on stability; Ubuntu uses apt, for high update frequency), support cycle (CentOS provides 10 years of support, Ubuntu provides 5 years of LTS support), community support (CentOS focuses on stability, Ubuntu provides a wide range of tutorials and documents), uses (CentOS is biased towards servers, Ubuntu is suitable for servers and desktops), other differences include installation simplicity (CentOS is thin)

What to do if the docker image fails What to do if the docker image fails Apr 15, 2025 am 11:21 AM

Troubleshooting steps for failed Docker image build: Check Dockerfile syntax and dependency version. Check if the build context contains the required source code and dependencies. View the build log for error details. Use the --target option to build a hierarchical phase to identify failure points. Make sure to use the latest version of Docker engine. Build the image with --t [image-name]:debug mode to debug the problem. Check disk space and make sure it is sufficient. Disable SELinux to prevent interference with the build process. Ask community platforms for help, provide Dockerfiles and build log descriptions for more specific suggestions.

What computer configuration is required for vscode What computer configuration is required for vscode Apr 15, 2025 pm 09:48 PM

VS Code system requirements: Operating system: Windows 10 and above, macOS 10.12 and above, Linux distribution processor: minimum 1.6 GHz, recommended 2.0 GHz and above memory: minimum 512 MB, recommended 4 GB and above storage space: minimum 250 MB, recommended 1 GB and above other requirements: stable network connection, Xorg/Wayland (Linux)

vscode cannot install extension vscode cannot install extension Apr 15, 2025 pm 07:18 PM

The reasons for the installation of VS Code extensions may be: network instability, insufficient permissions, system compatibility issues, VS Code version is too old, antivirus software or firewall interference. By checking network connections, permissions, log files, updating VS Code, disabling security software, and restarting VS Code or computers, you can gradually troubleshoot and resolve issues.

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

What is vscode What is vscode for? What is vscode What is vscode for? Apr 15, 2025 pm 06:45 PM

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages ​​and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

See all articles