import <strong class="keylink">pandas</strong> as pd
df = pd.DataFrame(data, columns=["Column Name"])
df.dropna()
, df.fillna()
, df.drop_duplicates()
Data exploration and visualization:
df.astype("data type")
df["Column Name"].unique()
, df["Column Name"].value_counts()
df.plot()
, df.hist()
, df.scatterplot()
Data processing skills:
pd.merge(df1, df2, on=["Column Name"])
df.groupby(["Group key"]).agg({"Aggregation function"})
df.pivot_table(index=["row<strong class="keylink">index</strong>"], columns=["column index"], values=["value" ])
df.apply(lambda x: custom function (x))
Advanced Features:
df.interpolate()
, df.resample()
df.resample("time interval").mean()
df.apply(lambda x: (x - x.min()) / (x.max() - x.min()))
df.parallel_apply(lambda x: custom function (x))
Case application:
Best Practices:
Master these advanced Pandas skills and you will significantly improve your data processing capabilities and unlock the full potential of lockdata analysis. Through effective data cleansing, exploration, transformation, and visualization, you can gain valuable insights from your data, make informed decisions, and drive business growth.
The above is the detailed content of Python Pandas advanced cheats to tap into the potential of data processing!. For more information, please follow other related articles on the PHP Chinese website!