Home > Backend Development > Python Tutorial > Python Pandas practical drill, a quick advancement for data processing novices!

Python Pandas practical drill, a quick advancement for data processing novices!

王林
Release: 2024-03-20 22:21:14
forward
719 people have browsed it

Python Pandas 实战演练,数据处理小白的快速进阶!

  1. Use read_csv() to read the CSV file: df = pd.read_csv("data.csv")
  2. Handling missing values:
    • Remove missing values: df = df.dropna()
    • Fill missing values: df["column_name"].fillna(value)
  3. Convert data type: df["column_name"] = df["column_name"].astype(dtype)
  4. Sort and group by:
    • Sort: df.sort_values(by="column_name")
    • Group: groupby_object = df.groupby(by="column_name")

2. Data analysis

  1. statistics
    • describe(): View basic statistics of data
    • mean(): Calculate the average value
    • std(): Calculate standard deviation
  2. Draw a chart:
    • plot(): Generate various chart types, such as line charts and scatter charts
    • bar():Generate bar chart
    • pie():Generate pie chart
  3. Data aggregation:
    • agg(): Apply aggregate function on grouped data
    • pivot_table(): Create a crosstab for summarizing and analyzing data

3. Data operation

  1. Indices and slices:
    • loc[index_values]: Get data by index value
    • iloc[index_values]: Get data by index position
    • query(): Filter data by conditions
  2. Data operations:
    • append():Append data to DataFrame
    • merge(): Merge two or more DataFrames
    • concat(): Concatenate multiple DataFrames together
  3. Data conversion:
    • apply():Apply the function row by row or column by column
    • lambda(): Create an anonymous function to transform data

4. Advanced skills

  1. Custom functions: Create and use custom functions to extend the functionality of pandas
  2. Vectorization operations: Use NumPy’s vectorization functions to improve efficiency
  3. Data cleaning:
    • str.strip(): Remove whitespace characters from string
    • str.replace(): Replace characters in the string or regular expression
    • str.lower(): Convert the string to lowercase

5. Case application

  1. Analyze customer data: Understand customer behavior, purchasing patterns and trends
  2. Processing financial data: calculating financial indicators, analyzing stock performance
  3. Exploring scientific data: processing sensor data and analyzing experimental results

The above is the detailed content of Python Pandas practical drill, a quick advancement for data processing novices!. For more information, please follow other related articles on the PHP Chinese website!

source:lsjlt.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template