


Explore the underlying principles and algorithm selection of the C++sort function
C The bottom layer of the sort function uses merge sort, its complexity is O(n log n), and provides different sorting algorithm choices, including quick sort, heap sort and stable sort.
C Exploring the underlying principles and algorithm selection of the sort function
C sort
The function is a key algorithm in the Standard Template Library (STL). Used to sort elements in a container. This function modifies the contents of the container so that the elements are in ascending order (from smallest to largest).
Underlying principle
sort
The underlying function relies on the merge sort algorithm. This algorithm divides the list into smaller sublists until each sublist contains one element. It then recursively sorts these sublists and merges the sorted sublists into a single sorted list.
The complexity of merge sort is O(n log n), where n is the number of elements in the list. This makes it very efficient for large data sets.
Algorithm Selection
C sort
function provides different sorting algorithm selections by using the std::sort
function template parameters to specify. By default, it uses merge sort. However, other algorithms can also be chosen, such as:
- Quick sort: Complexity is O(n^2) worst case, but average complexity for most data sets is O(n log n). It is faster than merge sort, but it can be slower for some data sets (like almost sorted lists).
- Heap sort: The complexity is O(n log n). It has similar performance to merge sort but has lower memory consumption.
- std::stable_sort: A stable sorting algorithm that sorts a list while maintaining the relative order of elements.
Practical Example
Consider the following code example, which uses the sort
function to sort a std::vector
Sort the integers in:
#include <iostream> #include <vector> #include <algorithm> int main() { std::vector<int> numbers = {3, 1, 4, 2, 5}; std::sort(numbers.begin(), numbers.end()); for (int num : numbers) { std::cout << num << " "; } std::cout << std::endl; return 0; }
Output:
1 2 3 4 5
The above is the detailed content of Explore the underlying principles and algorithm selection of the C++sort function. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Counting sounds simple, but in practice it is very difficult. Imagine you are transported to a pristine rainforest to conduct a wildlife census. Whenever you see an animal, take a photo. Digital cameras only record the total number of animals tracked, but you are interested in the number of unique animals, but there is no statistics. So what's the best way to access this unique animal population? At this point, you must be saying, start counting now and finally compare each new species from the photo to the list. However, this common counting method is sometimes not suitable for information amounts up to billions of entries. Computer scientists from the Indian Statistical Institute, UNL, and the National University of Singapore have proposed a new algorithm - CVM. It can approximate the calculation of different items in a long list.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.
