Table of Contents
0.この記事は何をするのですか?
1. 論文情報
2. 要約
3. 効果のデモ
4. 主な貢献
5. 具体的な原則は何ですか?
6. Experimental results
#7. Summary
Home Technology peripherals AI Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation!

Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation!

Apr 03, 2024 pm 12:04 PM
data train

0.この記事は何をするのですか?

提案された DepthFM: 多用途かつ高速な最先端の生成単眼深度推定モデル 。従来の深度推定タスクに加えて、DepthFM は深度修復などの下流タスクでも最先端の機能を実証します。 DepthFM は効率的で、いくつかの推論ステップ内で深度マップを合成できます。

この作品を一緒に読みましょう~

1. 論文情報

タイトル: DepthFM: フローマッチングによる高速単眼深度推定

著者: Ming Gui、Johannes S. Fischer、Ulrich Prestel、Pingchuan Ma、Dmytrokotovenko、Olga Grebenkova、Stefan Andreas Baumann、Vincent Tao Hu、Björn Ommer

機関: MCML

元のリンク: https://arxiv.org/abs/2403.13788

コードリンク: https://github.com/CompVis/ Depth-fm

公式ホームページ: https:// Depthfm.github .io/

2. 要約

は、下流の観光タスクやアプリケーションの多くにとって重要です。この問題に対する現在の識別方法は不鮮明なアーティファクトによって制限されていますが、最先端の生成方法は SDE の性質によりトレーニング サンプル速度が遅いという問題があります。ノイズから始めるのではなく、入力画像から深度画像への直接マッピングを求めます。解空間内の直線軌道が効率と高品質を提供するため、これはフロー マッチングによって効率的に構築できることがわかりました。私たちの研究は、事前トレーニングされた画像拡散モデルがフローマッチングの深いモデルのための十分な事前知識として使用できることを示しています。複雑な自然シーンのベンチマークでは、私たちの軽量アプローチは、少量の合成データのみでトレーニングされているにもかかわらず、有利な低計算コストで最先端のパフォーマンスを実証します。

3. 効果のデモ

DepthFM は、強力なゼロサンプル汎化機能を備えた高速推論フロー マッチング モデルで、強力な事前知識を利用でき、非常に使いやすいです。 . 未知の実像に簡単に一般化できます。合成データでトレーニングした後、モデルは未知の実際の画像に対して適切に一般化され、深度画像と正確に一致します。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

他の最先端のモデルと比較して、DepthFM は 1 回の関数評価のみで非常に鮮明な画像を取得します。 Marigold の深度推定には DethFM の 2 倍の時間がかかりますが、同じ粒度で深度マップを生成することはできません。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

4. 主な貢献

(1) 最先端の多機能高速単眼鏡DepthFMの提案深度推定モデル。従来の深度推定タスクに加えて、DepthFM は、深度修復や深度条件付き画像合成などの下流タスクでも最先端の機能を実証します。

(2) は、トレーニング データにほとんど依存せず、実世界の画像を必要とせずに、拡散モデルからフロー マッチング モデルへの強力な画像事前分布の転送が成功したことを示しています。

(3) は、フロー マッチング モデルが効率的であり、単一の推論ステップ内で深度マップを合成できることを示しています。

(4) DepthFM は合成データのみでトレーニングされているにもかかわらず、ベンチマーク データセットと自然画像で良好なパフォーマンスを発揮します。

(5) 表面法線損失を補助ターゲットとして使用して、より正確な深度推定を取得します。

(6) 深さの推定に加えて、その予測の信頼性も確実に予測できます。

5. 具体的な原則は何ですか?

トレーニング パイプライン。 トレーニングは、フロー マッチングと表面法線損失によって制限されます。フロー マッチングの場合、データ依存のフロー マッチングを使用して、グラウンド トゥルースの深さと対応する画像の間のベクトル フィールドを回帰します。さらに、表面法線の損失によって幾何学的なリアリズムが実現されます。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

データ関連のフロー マッチング: DepthFM は、画像と深度のペアを利用して、画像分布と深度分布の間の直線ベクトル場を回帰します。このアプローチにより、パフォーマンスを犠牲にすることなく、効率的な複数ステップの推論が促進されます。

拡散事前分布からの微調整: 著者らは、強力な画像事前分布を基本画像合成拡散モデル (安定拡散 v2-1) からフロー マッチング モデルにほとんど変換せずに転送することに成功したことを実証します。依存関係トレーニング データを使用するため、現実世界の画像は必要ありません。

補助表面法線損失: DepthFM が合成データでのみトレーニングされていることを考慮すると、ほとんどの合成データ セットはグラウンド トゥルースの表面法線を提供し、表面法線損失は補助ターゲットとして使用されます。 DepthFM 深度推定の精度を向上させます。

6. Experimental results

DepthFM demonstrates significant generalization ability by training only on 63k purely synthetic samples, and is able to perform zero-level training on indoor and outdoor data sets. - Shot depth estimation. Table 1 qualitatively shows the performance comparison of DepthFM with state-of-the-art corresponding models. While other models often rely on large datasets for training, DepthFM leverages the rich knowledge inherent in the underlying diffusion-based model. This method not only saves computing resources, but also emphasizes the adaptability and training efficiency of the model.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Comparison of diffusion-based Marigold depth estimation, Flow Matching (FM) benchmark and DepthFM model. Each method is evaluated using only one ensemble member and with varying numbers of function evaluations (NFE) on two common benchmark datasets. Compared with the FM baseline, DepthFM integrates normal loss and data-dependent coupling during training.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Qualitative results for Marigold and DepthFM models in different numbers of functional evaluations. It is worth noting that Marigold does not give any meaningful results through one-step inference, while the results of DepthFM already show the real depth map.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

Perform deep completion on Hypersim. Left: Giving some depth. Medium: Depth estimated from the given partial depth. Right: True depth.

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

#7. Summary

DepthFM, a flow matching method for monocular depth estimation. By learning a direct mapping between the input image and depth, rather than denoising a normal distribution into a depth map, this approach is significantly more efficient than current diffusion-based solutions while still providing fine-grained depth maps without Common artifacts of the discriminative paradigm. DepthFM uses a pre-trained image diffusion model as a prior, effectively transferring it to a deep flow matching model. Therefore, DepthFM is only trained on synthetic data but still generalizes well to natural images during inference. Additionally, auxiliary surface normal loss has been shown to improve depth estimation. DepthFM's lightweight approach is competitive, fast, and provides reliable confidence estimates.

Readers who are interested in more experimental results and article details can read the original paper

The above is the detailed content of Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation!. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Use ddrescue to recover data on Linux Use ddrescue to recover data on Linux Mar 20, 2024 pm 01:37 PM

DDREASE is a tool for recovering data from file or block devices such as hard drives, SSDs, RAM disks, CDs, DVDs and USB storage devices. It copies data from one block device to another, leaving corrupted data blocks behind and moving only good data blocks. ddreasue is a powerful recovery tool that is fully automated as it does not require any interference during recovery operations. Additionally, thanks to the ddasue map file, it can be stopped and resumed at any time. Other key features of DDREASE are as follows: It does not overwrite recovered data but fills the gaps in case of iterative recovery. However, it can be truncated if the tool is instructed to do so explicitly. Recover data from multiple files or blocks to a single

Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation! Open source! Beyond ZoeDepth! DepthFM: Fast and accurate monocular depth estimation! Apr 03, 2024 pm 12:04 PM

0.What does this article do? We propose DepthFM: a versatile and fast state-of-the-art generative monocular depth estimation model. In addition to traditional depth estimation tasks, DepthFM also demonstrates state-of-the-art capabilities in downstream tasks such as depth inpainting. DepthFM is efficient and can synthesize depth maps within a few inference steps. Let’s read about this work together ~ 1. Paper information title: DepthFM: FastMonocularDepthEstimationwithFlowMatching Author: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Hello, electric Atlas! Boston Dynamics robot comes back to life, 180-degree weird moves scare Musk Apr 18, 2024 pm 07:58 PM

Boston Dynamics Atlas officially enters the era of electric robots! Yesterday, the hydraulic Atlas just "tearfully" withdrew from the stage of history. Today, Boston Dynamics announced that the electric Atlas is on the job. It seems that in the field of commercial humanoid robots, Boston Dynamics is determined to compete with Tesla. After the new video was released, it had already been viewed by more than one million people in just ten hours. The old people leave and new roles appear. This is a historical necessity. There is no doubt that this year is the explosive year of humanoid robots. Netizens commented: The advancement of robots has made this year's opening ceremony look like a human, and the degree of freedom is far greater than that of humans. But is this really not a horror movie? At the beginning of the video, Atlas is lying calmly on the ground, seemingly on his back. What follows is jaw-dropping

Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Google is ecstatic: JAX performance surpasses Pytorch and TensorFlow! It may become the fastest choice for GPU inference training Apr 01, 2024 pm 07:46 PM

The performance of JAX, promoted by Google, has surpassed that of Pytorch and TensorFlow in recent benchmark tests, ranking first in 7 indicators. And the test was not done on the TPU with the best JAX performance. Although among developers, Pytorch is still more popular than Tensorflow. But in the future, perhaps more large models will be trained and run based on the JAX platform. Models Recently, the Keras team benchmarked three backends (TensorFlow, JAX, PyTorch) with the native PyTorch implementation and Keras2 with TensorFlow. First, they select a set of mainstream

The vitality of super intelligence awakens! But with the arrival of self-updating AI, mothers no longer have to worry about data bottlenecks The vitality of super intelligence awakens! But with the arrival of self-updating AI, mothers no longer have to worry about data bottlenecks Apr 29, 2024 pm 06:55 PM

I cry to death. The world is madly building big models. The data on the Internet is not enough. It is not enough at all. The training model looks like "The Hunger Games", and AI researchers around the world are worrying about how to feed these data voracious eaters. This problem is particularly prominent in multi-modal tasks. At a time when nothing could be done, a start-up team from the Department of Renmin University of China used its own new model to become the first in China to make "model-generated data feed itself" a reality. Moreover, it is a two-pronged approach on the understanding side and the generation side. Both sides can generate high-quality, multi-modal new data and provide data feedback to the model itself. What is a model? Awaker 1.0, a large multi-modal model that just appeared on the Zhongguancun Forum. Who is the team? Sophon engine. Founded by Gao Yizhao, a doctoral student at Renmin University’s Hillhouse School of Artificial Intelligence.

Slow Cellular Data Internet Speeds on iPhone: Fixes Slow Cellular Data Internet Speeds on iPhone: Fixes May 03, 2024 pm 09:01 PM

Facing lag, slow mobile data connection on iPhone? Typically, the strength of cellular internet on your phone depends on several factors such as region, cellular network type, roaming type, etc. There are some things you can do to get a faster, more reliable cellular Internet connection. Fix 1 – Force Restart iPhone Sometimes, force restarting your device just resets a lot of things, including the cellular connection. Step 1 – Just press the volume up key once and release. Next, press the Volume Down key and release it again. Step 2 – The next part of the process is to hold the button on the right side. Let the iPhone finish restarting. Enable cellular data and check network speed. Check again Fix 2 – Change data mode While 5G offers better network speeds, it works better when the signal is weaker

Kuaishou version of Sora 'Ke Ling' is open for testing: generates over 120s video, understands physics better, and can accurately model complex movements Kuaishou version of Sora 'Ke Ling' is open for testing: generates over 120s video, understands physics better, and can accurately model complex movements Jun 11, 2024 am 09:51 AM

What? Is Zootopia brought into reality by domestic AI? Exposed together with the video is a new large-scale domestic video generation model called "Keling". Sora uses a similar technical route and combines a number of self-developed technological innovations to produce videos that not only have large and reasonable movements, but also simulate the characteristics of the physical world and have strong conceptual combination capabilities and imagination. According to the data, Keling supports the generation of ultra-long videos of up to 2 minutes at 30fps, with resolutions up to 1080p, and supports multiple aspect ratios. Another important point is that Keling is not a demo or video result demonstration released by the laboratory, but a product-level application launched by Kuaishou, a leading player in the short video field. Moreover, the main focus is to be pragmatic, not to write blank checks, and to go online as soon as it is released. The large model of Ke Ling is already available in Kuaiying.

The U.S. Air Force showcases its first AI fighter jet with high profile! The minister personally conducted the test drive without interfering during the whole process, and 100,000 lines of code were tested for 21 times. The U.S. Air Force showcases its first AI fighter jet with high profile! The minister personally conducted the test drive without interfering during the whole process, and 100,000 lines of code were tested for 21 times. May 07, 2024 pm 05:00 PM

Recently, the military circle has been overwhelmed by the news: US military fighter jets can now complete fully automatic air combat using AI. Yes, just recently, the US military’s AI fighter jet was made public for the first time and the mystery was unveiled. The full name of this fighter is the Variable Stability Simulator Test Aircraft (VISTA). It was personally flown by the Secretary of the US Air Force to simulate a one-on-one air battle. On May 2, U.S. Air Force Secretary Frank Kendall took off in an X-62AVISTA at Edwards Air Force Base. Note that during the one-hour flight, all flight actions were completed autonomously by AI! Kendall said - "For the past few decades, we have been thinking about the unlimited potential of autonomous air-to-air combat, but it has always seemed out of reach." However now,

See all articles