Table of Contents
Designing an AI Pipeline
How businesses are using AI today
Home Technology peripherals AI How GenAI is changing the way businesses handle data

How GenAI is changing the way businesses handle data

Apr 07, 2024 pm 02:58 PM
AI ai genai

How GenAI is changing the way businesses handle data

The launch of the Claude 3 series models in March 2024 and their successful performance in numerous benchmark tests is great news for businesses. It looks like enterprise customers will have access to more high-quality AI and GenAI tools from more vendors in order to evaluate and select the best solution.

While the quality and variety of public tools and services increase, it’s important to remember that it all starts with data. It’s not just the data used to train the underlying models that power AI and machine learning tools, there are tools for data analysis that uncover hidden patterns and insights.

As I explained before, there are some key preparations when it comes to getting your business ready to leverage AI, and you can’t have a successful AI strategy without a successful data strategy. The first step is to prepare your data to make it suitable for AI, which involves assessing, integrating, protecting and curating your decentralized digital gold so that it can be accessed by the growing variety of AI tools and services on the market.

In this post, I’ll focus on why it’s critical to have efficient pipelines between your data and cloud-based AI services, and what this might mean for your business.

Designing an AI Pipeline

Once you've assessed, consolidated, and secured your data in the cloud, you'll want to curate specific data sets relevant to different groups or use cases, and then build a pipeline that This selected data is transferred to the AI ​​tool of your choice. If your data resides in an Amazon Simple Storage Service (S3) bucket, you'll want to take advantage of the S3 APIs, which support a wide range of AI tools and services for comprehensive and fast access to your data.

Both tools should be a priority - you want these tools to run at high speeds, and you want to avoid locking yourself into a specific vendor or provider. The leading GenAI tool you choose today may not be the best fit for your needs three months from now, and you may want the flexibility to leverage data from different AI tools. This field is changing so quickly.

When you use hyperscale computing services, you usually need to avoid forcing customers into closed campuses to avoid affecting their experience. Therefore, to ensure that your data resides in AWS S3, you can use tools from Microsoft or Google. For example, if you want to use Google Vertex, you can use the S3 API to set up a pipeline between your S3 dataset and Google services.

So what’s next? Well, once your data is suitable for AI, and you’ve built or mapped out pipelines to connect your chosen services to your curated data, it’s time to see what these tools can actually do What have you done for your business? We started noticing a variety of interesting use cases from our customers.

How businesses are using AI today

If you run a manufacturing business, you likely have imaging and IoT devices that capture data throughout the automated manufacturing process. Today, at my company, we are working with customers who take this scanning and IoT data, build pipelines to cloud services, and then build machine learning (ML) models that end users can interact with to learn more about them What happens internally on a manufacturing, quality assurance, or assembly site. They are discovering more efficient ways to use workflows. They are discovering and fixing product defects faster.

If you have a marketing company, you may want to leverage a service like AWS Rekognition or AWS Kendra to analyze and search video and image content. One of our clients is an advertising giant with hundreds of studios around the world, each with its own rich history of creative work. Global businesses like this can leverage AI tools to help their creative teams easily find inspiration from past projects and use GenAI services to create new campaigns when pitching proposals to new clients.

However, the most common AI applications we see in enterprises today involve some variation of a chat interface. This tool can be used for customer support, marketing, and even internal research to promote the dissemination of institutional knowledge.

Implementing these services proved surprisingly easy. Google Vertex is a great option because it's easy to use, cost-effective, and leverages Google's LLM while ensuring private data is protected. The Amazon Bedrock is equally impressive.

Our customers have also been using Microsoft Copilot and Copilot Studio, a web application that helps you create chatbots that target specific needs and do so in a way that maintains data privacy and compliance. A technology company with a large knowledge base of documents could create a curated dataset consisting of these texts, train a custom Copilot, and then provide its customers or internal users with a tool that makes it easier for them to find and extract relevant information from that knowledge base. information.

Every industry and every business has its specific needs, but every business I’ve worked with in recent years has had one problem in common – ever-increasing amounts of data. Ultimately, these AI, GenAI, and ML tools can provide businesses with the opportunity to turn disparate data into assets that can help increase efficiency, accelerate business processes, and create significant competitive advantage.

We don’t know which AI tools and services will prevail, or which specific tools will be best for your business. One thing is clear, however: this technology will transform your industry, and tomorrow’s leading companies will be those that make data AI-friendly today and start building data pipelines for AI tools and services.

The above is the detailed content of How GenAI is changing the way businesses handle data. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to check CentOS HDFS configuration How to check CentOS HDFS configuration Apr 14, 2025 pm 07:21 PM

Complete Guide to Checking HDFS Configuration in CentOS Systems This article will guide you how to effectively check the configuration and running status of HDFS on CentOS systems. The following steps will help you fully understand the setup and operation of HDFS. Verify Hadoop environment variable: First, make sure the Hadoop environment variable is set correctly. In the terminal, execute the following command to verify that Hadoop is installed and configured correctly: hadoopversion Check HDFS configuration file: The core configuration file of HDFS is located in the /etc/hadoop/conf/ directory, where core-site.xml and hdfs-site.xml are crucial. use

Centos shutdown command line Centos shutdown command line Apr 14, 2025 pm 09:12 PM

The CentOS shutdown command is shutdown, and the syntax is shutdown [Options] Time [Information]. Options include: -h Stop the system immediately; -P Turn off the power after shutdown; -r restart; -t Waiting time. Times can be specified as immediate (now), minutes ( minutes), or a specific time (hh:mm). Added information can be displayed in system messages.

What are the backup methods for GitLab on CentOS What are the backup methods for GitLab on CentOS Apr 14, 2025 pm 05:33 PM

Backup and Recovery Policy of GitLab under CentOS System In order to ensure data security and recoverability, GitLab on CentOS provides a variety of backup methods. This article will introduce several common backup methods, configuration parameters and recovery processes in detail to help you establish a complete GitLab backup and recovery strategy. 1. Manual backup Use the gitlab-rakegitlab:backup:create command to execute manual backup. This command backs up key information such as GitLab repository, database, users, user groups, keys, and permissions. The default backup file is stored in the /var/opt/gitlab/backups directory. You can modify /etc/gitlab

Centos install mysql Centos install mysql Apr 14, 2025 pm 08:09 PM

Installing MySQL on CentOS involves the following steps: Adding the appropriate MySQL yum source. Execute the yum install mysql-server command to install the MySQL server. Use the mysql_secure_installation command to make security settings, such as setting the root user password. Customize the MySQL configuration file as needed. Tune MySQL parameters and optimize databases for performance.

How to operate distributed training of PyTorch on CentOS How to operate distributed training of PyTorch on CentOS Apr 14, 2025 pm 06:36 PM

PyTorch distributed training on CentOS system requires the following steps: PyTorch installation: The premise is that Python and pip are installed in CentOS system. Depending on your CUDA version, get the appropriate installation command from the PyTorch official website. For CPU-only training, you can use the following command: pipinstalltorchtorchvisiontorchaudio If you need GPU support, make sure that the corresponding version of CUDA and cuDNN are installed and use the corresponding PyTorch version for installation. Distributed environment configuration: Distributed training usually requires multiple machines or single-machine multiple GPUs. Place

Detailed explanation of docker principle Detailed explanation of docker principle Apr 14, 2025 pm 11:57 PM

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

How to view GitLab logs under CentOS How to view GitLab logs under CentOS Apr 14, 2025 pm 06:18 PM

A complete guide to viewing GitLab logs under CentOS system This article will guide you how to view various GitLab logs in CentOS system, including main logs, exception logs, and other related logs. Please note that the log file path may vary depending on the GitLab version and installation method. If the following path does not exist, please check the GitLab installation directory and configuration files. 1. View the main GitLab log Use the following command to view the main log file of the GitLabRails application: Command: sudocat/var/log/gitlab/gitlab-rails/production.log This command will display product

How is the GPU support for PyTorch on CentOS How is the GPU support for PyTorch on CentOS Apr 14, 2025 pm 06:48 PM

Enable PyTorch GPU acceleration on CentOS system requires the installation of CUDA, cuDNN and GPU versions of PyTorch. The following steps will guide you through the process: CUDA and cuDNN installation determine CUDA version compatibility: Use the nvidia-smi command to view the CUDA version supported by your NVIDIA graphics card. For example, your MX450 graphics card may support CUDA11.1 or higher. Download and install CUDAToolkit: Visit the official website of NVIDIACUDAToolkit and download and install the corresponding version according to the highest CUDA version supported by your graphics card. Install cuDNN library:

See all articles