Common programming techniques for passing function parameters in C++
The passing methods of function parameters in C include: passing by value (copying the value of the actual parameter) passing by reference (directly operating the value of the actual parameter) passing the pointer (directly accessing the address of the actual parameter) passing by const reference (reading the value of the actual parameter) value, but cannot be modified)
C Common programming tips for passing function parameters
In C, function parameters can be passed There are four ways to pass: pass by value, pass by reference, pass by pointer and pass by const reference. For different needs, different delivery methods are more suitable.
Call by Value
Passing value is the simplest and most direct way, that is, copying the value of the actual parameter inside the function. The advantage is that changes to the actual parameters are avoided from affecting the value of the actual parameters themselves. Example:
void increment(int num) { num++; // 只能更改 num 的局部副本 } int main() { int x = 5; increment(x); // x 的副本被传递给 increment() cout << x; // 输出 5,x 不会改变 }
Call by Reference
Passing a reference allows the value of the actual parameter to be directly manipulated within the function. The advantage is that it avoids the value transfer process and improves efficiency. Example:
void increment(int& num) { num++; // 直接更改实参的值 } int main() { int x = 5; increment(x); // x 的引用被传递给 increment() cout << x; // 输出 6 }
Call by Pointer
Passing a pointer allows direct access to the address of the actual parameter within the function. The advantage is that it can perform more flexible operations on the content pointed to by the pointer. Example:
void swap(int* a, int* b) { int temp = *a; *a = *b; *b = temp; } int main() { int x = 5, y = 7; swap(&x, &y); // 传递 x 和 y 的地址 cout << x << " " << y; // 输出 7 5 }
Call by const Reference
Passing a const reference is similar to passing a reference, but the function cannot modify the value of the actual parameter. The advantage is that accidental modifications are avoided and code security is improved. Example:
void print(const int& num) { cout << num; // 只读访问实参 } int main() { int x = 5; print(x); // x 的 const 引用被传递给 print() }
Practical case
When calculating the area of a circle, the parameter of the function can be the radius of the circle. In order to avoid the extra overhead caused by passing a value, you can choose to pass a reference and let the function directly operate on the radius value.
#include <cmath> double calculateArea(double& radius) { return M_PI * radius * radius; } int main() { double radius; cout << "Enter the radius of the circle: "; cin >> radius; cout << "The area of the circle is: " << calculateArea(radius) << endl; }
The above is the detailed content of Common programming techniques for passing function parameters in C++. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.
