How to use callback functions in C++?
Callback functions in C are implemented through function pointers or lambda expressions: Function pointer: define type void(*CallbackFunction)(int); register callback function: RegisterCallback(callback); call callback function: CallCallbacks(value); Example: The event handling class registers the callback function and triggers the event. Lambda expression: Register callback function: RegisterCallback(std::function
Usage of callback function in C
The callback function allows the function to return control to the caller, and then in some A function that is executed again when the condition is met. This is useful in event-driven programming, where one event may trigger multiple actions.
In C, callback functions can be implemented through function pointers or lambda expressions.
Use function pointers
// 定义一个函数指针类型 typedef void(*CallbackFunction)(int); // 注册回调函数 void RegisterCallback(CallbackFunction callback) { // 将回调函数存储在列表中 callbackList.push_back(callback); } // 调用回调函数 void CallCallbacks(int value) { for (auto callback : callbackList) { callback(value); } } // 实战案例:事件处理 // 定义一个事件处理类 class EventHandler { public: void OnEvent() { // 调用注册的回调函数 CallCallbacks(42); } }; // 创建事件处理类实例 EventHandler eventHandler; // 订阅事件的回调函数 RegisterCallback([](int value) { std::cout << "事件处理程序: " << value << std::endl; }); // 触发事件 eventHandler.OnEvent();
Use lambda expression
Lambda expression was introduced in C 11, which provides a A concise way to define anonymous functions.
// 注册回调函数 void RegisterCallback(std::function<void(int)> callback) { // 将回调函数存储在列表中 callbackList.push_back(callback); } // 调用回调函数 void CallCallbacks(int value) { for (auto callback : callbackList) { callback(value); } } // 实战案例:用户输入 // 创建一个获取用户输入的函数 std::string GetUserInput() { std::string input; std::cout << "输入一些文本:" << std::flush; std::cin >> input; return input; } // 订阅获取用户输入后的回调函数 RegisterCallback([](int value) { std::cout << "用户输入了:" << GetUserInput() << std::endl; }); // 获取用户输入 GetUserInput();
The above is the detailed content of How to use callback functions in C++?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.
