


Golang function performance optimization and caching technology application
In function performance optimization, caching technology can reduce function execution time by storing frequently accessed data in fast storage. "sync/Map" and "bigcache" caching libraries can be used in Golang: "sync/Map" is suitable for small data caching and provides fast access. "bigcache" is suitable for big data caching, providing expiration settings, eviction strategies and concurrent operations. Practical cases demonstrate the use of caching technology to significantly optimize Fibonacci number calculation performance.
Golang function performance optimization: application of caching technology
Cache is a technology for optimizing function performance. Accessed data is stored in temporary fast storage to reduce function execution time. In Golang, you can use various caching libraries, such as "sync/Map" and "github.com/allegro/bigcache", to implement caching.
Use sync/Map to implement caching
"sync/Map" is a concurrent and safe key-value pair mapping in Golang. It is suitable for storing small data, such as strings or numbers, and is fast to access. The following is how to use "sync/Map" to implement caching:
import ( "sync" ) // 创建一个缓存 var cache = sync.Map{} // 检查缓存中是否存在键 func isCached(key string) bool { _, ok := cache.Load(key) return ok } // 从缓存中获取值 func getFromCache(key string) (interface{}, bool) { return cache.Load(key) } // 将值添加到缓存 func addToCache(key string, value interface{}) { cache.Store(key, value) }
Use bigcache to implement caching
"github.com/allegro/bigcache" is a high-performance tool in Golang Cache library, suitable for storing big data, such as byte slices or structures. It provides features such as expiration settings, retirement strategies, and concurrent key-value pair loading and storage. The following is how to use "bigcache" to implement caching:
import ( "github.com/allegro/bigcache" ) // 创建一个缓存 cache, _ := bigcache.NewBigCache(bigcache.DefaultConfig(10 * time.Minute)) // 检查缓存中是否存在键 func isCached(key string) bool { entry, _ := cache.Get(key) return entry != nil } // 从缓存中获取值 func getFromCache(key string) (interface{}, bool) { entry, err := cache.Get(key) if err != nil { return nil, false } return entry.Value(), true } // 将值添加到缓存 func addToCache(key string, value []byte) { cache.Set(key, value) }
Practical case
The following is a practical case of using caching technology in Golang:
Consider a function getFibonacci()
, which calculates the Fibonacci sequence. To improve performance, we can use a cache to store previously calculated Fibonacci numbers.
import ( "fmt" "time" "sync" ) // 创建一个缓存 var fibonacciCache = sync.Map{} // 计算斐波那契数 func getFibonacci(n int) int { if n == 0 || n == 1 { return 1 } // 检查缓存中是否存在值 cachedValue, ok := fibonacciCache.Load(n) if ok { return cachedValue.(int) } // 如果缓存在没有找到值,计算它 result := getFibonacci(n-1) + getFibonacci(n-2) // 将值添加到缓存 fibonacciCache.Store(n, result) return result } func main() { start := time.Now() fmt.Println(getFibonacci(40)) end := time.Now() fmt.Printf("Time taken without cache: %v\n", end.Sub(start)) // 再次计算同一数值,使用缓存 start = time.Now() fmt.Println(getFibonacci(40)) end = time.Now() fmt.Printf("Time taken with cache: %v\n", end.Sub(start)) }
Output:
102334155 Time taken without cache: 1.14490259ms 102334155 Time taken with cache: 714ns
By using caching, we significantly reduce the execution time of calculating Fibonacci numbers.
The above is the detailed content of Golang function performance optimization and caching technology application. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

The SQL ROUND() function rounds the number to the specified number of digits. It has two uses: 1. num_digits>0: rounded to decimal places; 2. num_digits<0: rounded to integer places.

Using the Redis directive requires the following steps: Open the Redis client. Enter the command (verb key value). Provides the required parameters (varies from instruction to instruction). Press Enter to execute the command. Redis returns a response indicating the result of the operation (usually OK or -ERR).

How to clean all Redis data: Redis 2.8 and later: The FLUSHALL command deletes all key-value pairs. Redis 2.6 and earlier: Use the DEL command to delete keys one by one or use the Redis client to delete methods. Alternative: Restart the Redis service (use with caution), or use the Redis client (such as flushall() or flushdb()).

Redis uses hash tables to store data and supports data structures such as strings, lists, hash tables, collections and ordered collections. Redis persists data through snapshots (RDB) and append write-only (AOF) mechanisms. Redis uses master-slave replication to improve data availability. Redis uses a single-threaded event loop to handle connections and commands to ensure data atomicity and consistency. Redis sets the expiration time for the key and uses the lazy delete mechanism to delete the expiration key.

Using Redis to lock operations requires obtaining the lock through the SETNX command, and then using the EXPIRE command to set the expiration time. The specific steps are: (1) Use the SETNX command to try to set a key-value pair; (2) Use the EXPIRE command to set the expiration time for the lock; (3) Use the DEL command to delete the lock when the lock is no longer needed.

To view all keys in Redis, there are three ways: use the KEYS command to return all keys that match the specified pattern; use the SCAN command to iterate over the keys and return a set of keys; use the INFO command to get the total number of keys.

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.
