Home Backend Development C++ What are the applications of C++ function pointers in virtual methods and virtual tables?

What are the applications of C++ function pointers in virtual methods and virtual tables?

Apr 17, 2024 pm 06:00 PM
c++ function pointer virtual method virtual table

C The function pointer is used in the virtual method to store the pointer to the overridden method implementation of the derived class, and in the virtual table to initialize the virtual table and store the pointer to the virtual method implementation, thereby achieving runtime polymorphism and allowing derivation. The class overrides the virtual method in the base class and calls the correct implementation based on the actual type of the object at runtime.

C++ 函数指针在虚拟方法和虚表中的应用有哪些?

C function pointer: application of virtual methods and virtual tables

In C, function pointers are used in implementing virtual methods and maintaining Virtual tables play a vital role. This article will delve into these applications and deepen understanding through practical cases.

Virtual method

Virtual method is a member function declared in the base class and overridden by the derived class. When a virtual method is called through a base class pointer, the derived class's implementation is called based on the actual type of the runtime object.

In order to implement virtual methods, the compiler creates a virtual function table (vtable) for each base class, which stores pointers to the implementation of each virtual method. When a virtual method is called, the compiler uses the object's vtable to find and call the correct implementation.

Application of function pointers in virtual methods

Function pointers are used to store pointers to virtual method implementations in vtables. The compiler allocates a vtable entry for each virtual method and populates it with a function pointer pointing to the method's implementation.

For example:

class Base {
public:
    virtual void print() {
        cout << "Base::print" << endl;
    }
};

class Derived : public Base {
public:
    virtual void print() override {
        cout << "Derived::print" << endl;
    }
};

int main() {
    Base* base = new Derived;
    base->print(); // 输出 "Derived::print"
}
Copy after login

In this example, the compiler creates a vtable with two entries in it. The first entry points to the implementation of the print() method in the base class Base, and the second entry points to the overridden print in the derived class Derived () Implementation of method. When base->print() is executed, the compiler uses the vtable to obtain the appropriate function pointer and calls the corresponding implementation.

Virtual table

A virtual table is a data structure used to store function pointers pointing to virtual method implementations. Each entry in the virtual table corresponds to a virtual method declared in the base class.

Application of function pointers in virtual tables

Function pointers are used to initialize the virtual table and store pointers to virtual method implementations. When the compiler detects that a class contains virtual methods, it generates a vtable for the class. The type of each entry in the virtual table is a function pointer corresponding to the method's return type.

In the previous example, the compiler will generate a virtual table containing two entries for the base class Base:

vtable[Base] = {
    Base::print,
    Derived::print
};
Copy after login

Practical case

Let us further understand the application of function pointers in virtual methods and virtual tables through a real-world example. Let's create a simple shape drawing library:

class Shape {
public:
    virtual void draw() = 0;
};

class Circle : public Shape {
public:
    virtual void draw() override {
        cout << "Drawing a circle..." << endl;
    }
};

class Square : public Shape {
public:
    virtual void draw() override {
        cout << "Drawing a square..." << endl;
    }
};

int main() {
    vector<Shape*> shapes;
    shapes.push_back(new Circle);
    shapes.push_back(new Square);

    for (auto shape : shapes) {
        shape->draw();
    }
}
Copy after login

In this example, the Shape class is the base class, while the Circle and Square Is a derived class. The draw() method is a virtual method and is overridden by each derived class. The compiler creates a vtable for the Shape class that contains function pointers to each derived class's implementation of the draw() method.

When shape->draw() is called, the compiler uses the object's vtable to obtain the appropriate function pointer and calls the correct implementation. This allows us to draw different types of shapes through a unified Shape interface without the need for explicit conversions.

The above is the detailed content of What are the applications of C++ function pointers in virtual methods and virtual tables?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Why does an error occur when installing an extension using PECL in a Docker environment? How to solve it? Apr 01, 2025 pm 03:06 PM

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

How to apply snake nomenclature in C language? How to apply snake nomenclature in C language? Apr 03, 2025 pm 01:03 PM

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Usage of releasesemaphore in C Usage of releasesemaphore in C Apr 04, 2025 am 07:54 AM

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Issues with Dev-C version Issues with Dev-C version Apr 03, 2025 pm 07:33 PM

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

See all articles