Deadlock handling in Golang function concurrent programming
Deadlock is a state in concurrent programming in which multiple processes or threads wait for each other to release resources, causing the program to be unable to continue. Go provides the following mechanisms to deal with deadlocks: Mutex and Channel: used to ensure that only one goroutine can access the resource at a time. Deadlock detection: The Go runtime provides a deadlock detector that will panic when a deadlock is detected. Concurrence Patterns: Concurrency patterns provide a set of rules to avoid deadlocks.
Deadlock handling in Golang function concurrent programming
What is a deadlock?
Deadlock is a state in a concurrent program in which two or more processes or threads are waiting for each other to release resources, causing the program to be unable to continue.
Handling deadlocks in Go
Go provides various mechanisms to handle deadlocks:
-
Mutex and channels :
sync.Mutex
and channels can be used to ensure that only one goroutine can access the resource at a time. - Deadlock detection: The Go runtime provides a deadlock detector that will panic when a deadlock is detected.
- Concurrence Patterns: Concurrency patterns such as "dining philosophers" provide a set of rules to avoid deadlocks.
Practical Case
Consider the following example where two goroutines are trying to send data to each other:
package main import ( "sync" ) func main() { var wg sync.WaitGroup ch1 := make(chan int) ch2 := make(chan int) // 发送数据到 ch1 go func() { defer wg.Done() for { ch1 <- 1 data := <-ch2 _ = data } }() // 发送数据到 ch2 go func() { defer wg.Done() for { ch2 <- 2 data := <-ch1 _ = data } }() wg.Add(2) wg.Wait() }
Due toch1
and ch2
are both waiting to receive data, so a deadlock will occur. To solve this problem, you can use Mutex or channels to ensure that only one goroutine can access the resource at a time:
// 使用 Mutex package main import ( "sync" ) func main() { var wg sync.WaitGroup var m sync.Mutex ch1 := make(chan int) ch2 := make(chan int) // 发送数据到 ch1 go func() { defer wg.Done() for { m.Lock() ch1 <- 1 data := <-ch2 _ = data m.Unlock() } }() // 发送数据到 ch2 go func() { defer wg.Done() for { m.Lock() ch2 <- 2 data := <-ch1 _ = data m.Unlock() } }() wg.Add(2) wg.Wait() }
// 使用通道 package main func main() { var wg sync.WaitGroup ch1 := make(chan int) ch2 := make(chan int) // 发送数据到 ch1 go func() { defer wg.Done() for { select { case ch1 <- 1: data := <-ch2 _ = data } } }() // 发送数据到 ch2 go func() { defer wg.Done() for { select { case ch2 <- 2: data := <-ch1 _ = data } } }() wg.Add(2) wg.Wait() }
The above is the detailed content of Deadlock handling in Golang function concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

The Go framework stands out due to its high performance and concurrency advantages, but it also has some disadvantages, such as being relatively new, having a small developer ecosystem, and lacking some features. Additionally, rapid changes and learning curves can vary from framework to framework. The Gin framework is a popular choice for building RESTful APIs due to its efficient routing, built-in JSON support, and powerful error handling.

Best practices: Create custom errors using well-defined error types (errors package) Provide more details Log errors appropriately Propagate errors correctly and avoid hiding or suppressing Wrap errors as needed to add context

Common problems and solutions in Go framework dependency management: Dependency conflicts: Use dependency management tools, specify the accepted version range, and check for dependency conflicts. Vendor lock-in: Resolved by code duplication, GoModulesV2 file locking, or regular cleaning of the vendor directory. Security vulnerabilities: Use security auditing tools, choose reputable providers, monitor security bulletins and keep dependencies updated.

In Go framework development, common challenges and their solutions are: Error handling: Use the errors package for management, and use middleware to centrally handle errors. Authentication and authorization: Integrate third-party libraries and create custom middleware to check credentials. Concurrency processing: Use goroutines, mutexes, and channels to control resource access. Unit testing: Use gotest packages, mocks, and stubs for isolation, and code coverage tools to ensure sufficiency. Deployment and monitoring: Use Docker containers to package deployments, set up data backups, and track performance and errors with logging and monitoring tools.

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.
